Download presentation
Presentation is loading. Please wait.
Published byAdelia Walters Modified over 9 years ago
1
Ch. 14 – Probabilistic Reasoning Supplemental slides for CSE 327 Prof. Jeff Heflin
2
Conditional Independence if effects E 1,E 2,…,E n are conditionally independent given cause C can be used to factor joint distributions P(Weather,Cavity,Toothache,Catch) = P(Weather)P(Cavity,Toothache,Catch) = P(Weather)P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)
3
Bayes Net Example P(M|A) 0.70 A T F0.01 P(J|A) 0.90 A T F0.05 P(B) 0.001 Burglary Earthquake Alarm JohnCalls MaryCalls P(E) 0.002 0.94 0.29 P(A|B,E) 0.95 E T F B T T T F0.001 F F From Fig. 14.2, p. 512
4
Global Semantics atomic event using a Bayesian Network atomic event using the chain rule P(b, e,a, j, m) = P(b)P( e|b)P(a|b, e)P(j| b, e,a)P( m| b, e,a,j) P(b, e,a, j, m) = P(b)P( e)P(a|b, e)P(j|a)P( m|a)
5
Bayes Net Inference P(b|j, m)=αP(b)[P(e)[P(a|b,e)P(j|a)P( m|a) + P( a|b,e)P(j| a)P( m| a)] + P( e)[P(a|b, e)P(j|a)P( m|a) + P( a|b, e)P(j| a)P( m| a)] Formula: Example:
6
Tree of Inference Calculations + ++ P(b)=.001 P(e)=.002 P( e)=.998 P(a|b,e)=.95 P( a|b,e)=.05P(a|b, e)=.94P( a|b, e)=.06 P(j|a)=.90 P( m|a)=.30 P(j| a)=.05 P( m| a)=.99 P(j|a)=.90 P( m|a)=.30 P(j| a)=.05 P( m| a)=.99
7
Calculating P(b|j, m) and P( b|j, m) P(b|j, m)=αP(b)[P(e)[P(a|b,e)P(j|a)P( m|a) + P( a|b,e)P(j| a)P( m| a)] + P( e)[P(a|b, e)P(j|a)P( m|a) + P( a|b, e)P(j| a)P( m| a)]] = α(0.001)[(0.002)[(0.95)(0.9)(0.3) + (0.05)(0.05)(0.99)] + (0.998)[(0.94)(0.9)(0.3) + (0.06)(0.05)(0.99)]] = α(0.001)[(0.002)[0.2565 + 0.002475] + (0.998)[0.2538 + 0.00297]] = α(0.001)[(0.002)(0.258975) + (0.998)(0.25677)] = α(0.001)[0.00051795 + 0.25625646] = α(0.001)(0.25677441) = α(0.00025677441) P( b|j, m)=αP( b)[P(e)[P(a| b,e)P(j|a)P( m|a) + P( a| b,e)P(j| a)P( m| a)] + P( e)[P(a| b, e)P(j|a)P( m|a) + P( a| b, e)P(j| a)P( m| a)]] = α(0.999)[(0.002)[(0.29)(0.9)(0.3) + (0.71)(0.05)(0.99)] + (0.998)[(0.001)(0.9)(0.3) + (0.999)(0.05)(0.99)]] = α(0.999)[(0.002)[0.0783 + 0.035145] + (0.998)[0.00027 + 0.0494505]] = α(0.999)[(0.002)(0.113445) + (0.998)(0.497205)] = α(0.999)[0.00022689 + 0.049621059] = α(0.999)(0.049847949) = α(0.049798101051)
8
Normalizing the Answer P(b|j, m) = α(0.00025677441) P( b|j, m) = α(0.04979801051) α = 1 / (0.00025677441 + 0.04979801051) α = 1 / 0.050054875461 α 19.97807 P(b|j, m) (19.97807)(0.00025677441) 0.0051 P( b|j, m) (19.97807) (0.04979801051) 0.9949 P(B|j, m) =
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.