Download presentation
Presentation is loading. Please wait.
Published byDamon Berry Modified over 9 years ago
1
How generalized Minkowski four-force leads to scalar-tensor gravity György Szondy Logic, Relativity and Beyond 2nd International Conference August 9-13 2015, Budapest
2
Theories of Gravitation http://en.wikipedia.org/wiki/History_of_gravitational_theory ~50 alternatives andextensions LRB15 - Szondy: Scalar-Tensor Gravity22015.08.09.
3
Special Relativity and Minkowski four-force Scalar-Tensor Gravity Quantum effects (causing this Scalar field) Topics LRB15 - Szondy: Scalar-Tensor Gravity32015.08.09.
4
Minkowski (four)-force P2P2 m0m0 REST MASS is INVARIANT t x F F F LRB15 - Szondy: Scalar-Tensor Gravity42015.08.09. orthogonal
5
Generalized minkowski-force m1m1 m2m2 F Károly Novobátzky in the ´50s t x LRB15 - Szondy: Scalar-Tensor Gravity5 Similar to Higgs-field 2015.08.09.
6
Static gravitational field m1m1 m2m2 F E = const (Brans & Dicke 1961) t x LRB15 - Szondy: Scalar-Tensor Gravity 62015.08.09.
7
Static gravitational field - remarks (Brans & Dicke 1961) LRB15 - Szondy: Scalar-Tensor Gravity 72015.08.09. 1.Light has no rest- mass same as GR 3.Mercury perihelion advance can be calculated from the curvature effects 4.B&D in they original paper insisted on the constancy of rest mass, and used conform transformation to transform their result back to GR and tried to vary the gravitational constant
8
Conformal transformation applied by Brans & Dicke LRB15 - Szondy: Scalar-Tensor Gravity8 Scalar-Tensor theory: Getting back General Relativistic equation of motion: 2015.08.09.
9
How to transform Schwarzscild solution to Scalar-Tensor gravity Schwarschild solution uses standard coordinates Isotropic coordinates LRB15 - Szondy: Scalar-Tensor Gravity92015.08.09. Coordinate transformation Schwarzschild metric:
10
Understanding Schwarzscild metric LRB15 - Szondy: Scalar-Tensor Gravity10 Event horizon standard isotropic … in isotropic coordinates Einstein-Rosen bridge 2015.08.09.
11
Scalar field - Coordinate independent? g 00 in isotropic coordinates (gravitational potential) LRB15 - Szondy: Scalar-Tensor Gravity11 Ricci scalar in isotropic coords (after conformal transformation) 2015.08.09.
12
How can curvature effect Rest-Mass? Particle model from caracteristic lengths LRB15 - Szondy: Scalar-Tensor Gravity12 Schwarzschild-radius Quantum-radius Rest-mass and size depends on ‚k’ quantum number 2015.08.09.
13
How can background-curvature effect Rest-Mass? Particle model from caracteristic lengths LRB15 - Szondy: Scalar-Tensor Gravity13 Background curvature Modified Schwarzschild-radius 2015.08.09.
14
Conclusion General force field can change rest mass In scalar-tensor gravity Newtonian gravity and curvature-effects are seperated Background curvature changes rest mass Rest mass change are due to quantum effects Gravitational constant is different for different elementary particles LRB15 - Szondy: Scalar-Tensor Gravity142015.08.09.
15
References 1.Gy. Szondy, A Pure Geometric Approach to Derive Quantum Gravity from General Relativity; viXra:1312.0222 (2013) 2.Gy. David, Lecture 2011.04.27, https://www.youtube.com (Novobatzky)https://www.youtube.com 3.C. Brans and R. H. Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Phys. Rev. D 124 925-935 1961 4.Gy. Szondy, Linear Relativity as a Result of Unit Transformation, arXiv:physics/0109038 (2001) 5.Gy. Szondy, Mathematical Equivalency of the Ether Based Gavitation Theory of Janossy and General Relativity, arXiv:gr-qc/0310108 LRB15 - Szondy: Scalar-Tensor Gravity152015.08.09.
16
Comments & Questions 2015.08.09.LRB15 - Szondy: Scalar-Tensor Gravity16 Thank you for your attention!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.