Presentation is loading. Please wait.

Presentation is loading. Please wait.

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,

Similar presentations


Presentation on theme: "Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,"— Presentation transcript:

1 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, Italy * SISSA, Trieste, Italy GLAST LAT IDT & Collaboration Meeting October 22-25, 2002 Goddard Space Flight Center

2 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 2 Dark Matter and Chandra October 22, 2002 RELEASE: 02-10 Galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy

3 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 3 Observational constraints on  m and . A.H. Jaffe et al., Astro-ph 0007333 Bright stars: 0.5% Baryons (total): 4% ± 1% Nonbaryonic dark matter: 29% ± 4% Neutrinos: at least 0.1% (up to 5% ? ) Dark Energy: 66% ± 6% (Michael S. Turner astro-ph/0207297)

4 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 4 EGRET data & Susy models ~2 degrees around the galactic center EGRET data A.Morselli, A.Lionetto, A.Cesarini, F.Fucito, P.Ullio, 2002 Annihilation channel b-bbar M  =50 GeV background model(Galprop) WIMP annihilation (DarkSusy) Total Contribution

5 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 5 Differential yield for each annihilation channel WIMP mass=200GeV total yields yields not due to  0 decay

6 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 6 Differential yield for b bar neutralino mass

7 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 7 Indirect Detection through Cosmic Rays We compute (using Darksusy) the expected continuum gamma ray flux from a small region around the galactic centre (  2 degrees) due to neutralino- neutralino annihilations.

8 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 8 Indirect Detection through Cosmic Rays

9 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 9

10 10 the method: We choose all the values of the parameters (N b, N  ) that satisfy the condition we fixed N b to the maximum value allowed by the above condition (when N  =0) The points indicate the regions where we can discriminate the neutralino signal with GLAST at 5 sigma level in two years. background neutralino signal ~2 degrees around the galactic center background model (Galprop) gamma from  annihilation (one example from DarkSusy) EGRET data

11 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 11 Supersymmetry introduces free parameters: In the MSSM, with Grand Unification assumptions, the masses and couplings of the SUSY particles as well as their production cross sections, are entirely described once 5 parameters are fixed: M 1/2 the mass parameter of supersymmetric partners of gauge fields (gauginos)   the higgs mixing parameters that appears in the neutralino and chargino mass matrices m 0 the common mass for scalar fermions at the GUT scale A the trilinear coupling in the Higgs sector tang  = v 2 / v 1 = / the ratio between the two vacuum expectation values of the Higgs fields (3 S )

12 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 12 LEP Experimental lower limit on the mass of the lightest neutralino assuming MSSM (Minimal Standard Supersymmetric Model) M   GeV Limits on Supersymmetry already established hep-ph/ 0004169

13 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 13 A. Morselli,A. Lionetto,A. Cesarini, F.Fucito, P.Ullio 2002 regions with different m  in the M 1/2 m 0 plane A. Morselli,A. Lionetto,A. Cesarini, F.Fucito, P.Ullio 2002

14 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 14 Signal rate from Supersymmetry governed by supersymmetric parameters governed by halo distribution gamma-ray flux from neutralino annihilation

15 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 15   From rotation curves a =core radius of halo  Isothermal profile 2 2 0  =0 no cusp Navarro-Frenk-White 1 3 1 Moore et al… 1.5 3 1.5 Kravtsov et al.(a) 2 3 0.2 Kravtsov et al.(b) 2 3 0.4 Halo distributions

16 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 16 Permitted values of J(  ):

17 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 17 A.Morselli, A.Lionetto, A.Cesarini, F.Fucito, P.Ullio, 2002 GLAST Expectation & Susy models ~2 degrees around the galactic center

18 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 18 effective area distribution of observing time with inclination angle for the declination of the Galactic center. This is for a sky survey with +/-35 deg rocking and with the inclusion of the loss of exposure due to SAA (South Atlantic Anomaly) passages. The target direction was considered to be viewable if its zenith angle was no more than 105 deg. The fractions are for one precession period of the orbit (54.9 days). The main numbers are : Fraction of time in SAA: 0.142 Fraction of non-SAA time that source is not occulted: 0.592 Net fraction of time that source can be observed: 0.508 The figure divides this fraction into inclination angle ranges, the sum of all values is 1

19 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 19 Relative Effective Area Aeff(theta) (relative to the effective area at theta=0) in function of the angle from the zenith of the apparatus, for two cases, one simplified (Aeff(theta)= 1- (theta/66)^2) and the Aeff found in the Montecarlo Study for the Proposal, shown in red, with a more complicated parametrization, the simplest I found is: Aeff(theta) =0.99531+0.00227* theta -0.00035684* theta ^2 +2.345/1000000* theta ^3

20 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 20

21 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 21 N   Contour plots for GLAST 0.1 <        < 0.3 Excluded by LEP chargino mass limit > 95 GeV or because the neutralino is not the LSP A. Morselli,A. Lionetto,A. Cesarini, F.Fucito, P.Ullio 2002

22 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 22 N   Contour plots for GLAST 0.1 <        < 0.3 Excluded by LEP chargino mass limit > 95 GeV or or because the neutralino is not the LSP A. Morselli,A. Lionetto,A. Cesarini, F.Fucito, P.Ullio 2002

23 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 23 A. Morselli,A. Lionetto,A. Cesarini, F.Fucito, P.Ullio 2002 N   Contour plots for EGRET 0.1 <        < 0.3 Excluded by LEP chargino mass limit > 95 GeV or or because the neutralino is not the LSP

24 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 24 the end


Download ppt "Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,"

Similar presentations


Ads by Google