Download presentation
Presentation is loading. Please wait.
Published bySophia Craig Modified over 9 years ago
1
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 A High Order Relativistic Particle Push Method for PIC Simulations M.Quandt, C.-D. Munz, R.Schneider
2
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Overview Motivation Mathematical Model Results of Convergence Studies Non Relativistic Motion in Time varying E-Field Relativistic B-Field Motion Relativistic ExB Drift Conclusions and future Works
3
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Motivation - Coupled PIC/DSMC/FP PicLas-Code concept to study electric propulsion systems - High Order PIC method for the self-consistent solution of the Maxwell-Vlasov equations - For Consistency: High Order Lorentz solver which increase accuracy and efficiency
4
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Lorentz Equation of Motion - Truncated Taylor series expansion : - Mathematical model :
5
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Lorentz Equation of Motion - Recursive second order scheme for the velocity :
6
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Lorentz Equation of Motion - Recursive second order scheme for the velocity :
7
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Lorentz Equation of Motion - Recursive second order scheme for the velocity :
8
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Lorentz Equation of Motion - Recursive second order scheme for the velocity :
9
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Convergence Studies Set up of numerical experiments : - fixed final time - at compute the norm - experimental order of convergence - number of discretization points
10
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Lorentz factor - Variation in amplitude, phase shift and angular rate - All derivatives can be computed immediately - Parameters : Benchmark 1: Non-Relativistic Particle Motion
11
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Benchmark 1: Non-Relativistic Particle Motion The result of EOC are in good agreement with expected formel order. The 3D Lissajous trajectories; Line: exact; dots: numerical
12
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Lorentz factor gamma > 1 and constant in time - Particle trajectory in xy-plane with constant B-Field - Parameters of a positive charge and mass of electron Benchmark 2: Relativistic Particle Motion in B-Field
13
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Benchmark 2: Relativistic Particle Motion in B-Field - Initial Values of positive charge and mass of electron, positive B-field and velocity - Particle trajectory calculated with a third and fifth order scheme for 10 cycles - Particle trajectory deviates due to the error accumulation in time Particle trajectory with 160 intervals starts at (0,0). Line: exact; filled circles:third order scheme
14
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Benchmark 2: Relativistic Particle Motion in B-Field Slope of the graphs correspond to the experimental order of convergence. Improved Solution: fifth order - Initial Values of positive charge and mass of electron, positive B-field and velocity - Particle trajectory calculated with a third and fifth order scheme for 10 cycles - Particle trajectory deviates due to the error accumulation in time Particle trajectory with 160 intervals starts at (0,0). Line: exact; filled circles:third order scheme
15
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Problem reduction through Lorentz transformation for - Same equation as previously but now in primed reference system - Back transformation yields to ExB motion Benchmark 3: Relativistic Particle Motion in ExB-Field Lorentz transformation with velocity into primed reference system.
16
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Initial velocity in x direction of 0.99c - Positive charge with mass of electron in positive em fields - Negative drift velocity and clockwise rotation Benchmark 3: Relativistic Particle Motion in ExB-Field Third order approximation: visible deviation from the analytic solution.
17
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Initial velocity in x direction of 0.99c - Positive charge with mass of electron in positive em fields - Negative drift velocity and clockwise rotation Benchmark 3: Relativistic Particle Motion in ExB-Field Expected orders of convergence reached with sufficent number points. Third order approximation: visible deviation from the analytic solution. Fifth order scheme: Perfect agreement between exact and numerical solution.
18
Institut für Aerodynamik und Gasdynamik Universität Stuttgart The 30 th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 - Taylor series expansion in time applied to the Lorentz equation up to order 5 - Tested on 3 benchmark problems and EOC reached finally the expected order - Extension to higher order schemes (greater equal 6 ) - Stability analysis - Further benchmark tests -vs usual second order PIC scheme -vs defined problems of the HOUPIC project for accelerators - Coupling Maxell-Vlasov solver with FP and DSMC modules - Application to technical devices (pulsed plasma thruster, high-power high-frequency microwave generation) Conclusion and Future Works
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.