Download presentation
Presentation is loading. Please wait.
Published byJemima Smith Modified over 9 years ago
1
Alex Brown PREX Aug-17-2008 Neutron Radii and the Neutron Equation of State
2
Alex Brown PREX Aug-17-2008 Skx-s20(5) Skyrme energy density functional Skx-s15 Skx-s20 Skx-s25 0.15 0.20 0.25 fm for the 208 Pb neutron skin Neutron skin = S = Δ R np = R n – R p where R n is the rms radius for neutrons and R p is the rms radius for protons
3
Alex Brown PREX Aug-17-2008 Skyrme parameters based on fits to experimental data for properties of spherical nuclei, including single-particle energies, and nuclear matter A New Skyrme Interaction for Normal and Exotic Nuclei, Skx, Skxc BAB, Phys. Rev. C58, 220 (1998). Displacement Energies with the Skyrme Hartree-Fock Method, BAB, W. A. Richter and R. Lindsay, Phys. Lett. B483, 49 (2000). Neutron Radii in Nuclei and the Neutron Equation of State, BAB, Phys. Rev. Lett. 85, 5296 (2000). S. Typel and BAB, Phys. Rev. C64, 027302 (2001). Charge Densities with the Skyrme Hartree-Fock Method, W. A. Richter and BAB, Phys. Rev. C67, 034317 (2003). Tensor interaction contributions to single-particle energies, BAB, T. Duguet, T. Otsuka, D. Abe and T. Suzuki, Phys. Rev. C 74, 061303, (2006). Neutron Skin Deduced from Antiprotonic Atom Data, BAB, G. Shen, G. C. Hillhouse, J. Meng and A. Trzcinska, Phys. Rev. C76, 034305 (2007). Skx family of Skyrme functionals Skx, Skx-ce Skx-csb Skx-ta, Skx-tb Skx-s15, Skx-s20, Skx-s25
4
Alex Brown PREX Aug-17-2008 Skyrme interaction (σ = α)
5
Alex Brown PREX Aug-17-2008 Skyrme energy density functional Nuclear matter is this without the surface terms1 Nuclear matter (N=Z) depends on the t’s Symmetry energy and neutron matter also depends on the x’s
6
Alex Brown PREX Aug-17-2008
7
Skyrme single-particle wave equation Effective mass m*(r)/m
8
Alex Brown PREX Aug-17-2008 Skyrme potential
9
Alex Brown PREX Aug-17-2008 Focus on properties of spherical nuclei in a spherical potential model – fast but limited to properties of a few key nuclei 208 Pb 132 Sn 100 Sn
10
Alex Brown PREX Aug-17-2008
11
Skx-s15
12
Alex Brown PREX Aug-17-2008 Skx-s20
13
Alex Brown PREX Aug-17-2008 Skx-s25
14
Alex Brown PREX Aug-17-2008 Data for Skx BE for 16 O, 24 O, 34 Si, 40 Ca, 48 Ca, 48 Ni, 68 Ni, 88 Sr, 100 Sn, 132 Sn and 208 Pb with “errors” ranging from 1.0 MeV for 16 O to 0.5 MeV for 208 Pb rms charge radii for 16 O, 40 Ca, 48 Ca, 88 Sr and 208 Pb with “errors” ranging from 0.03 fm for 16 O to 0.01 fm for 208 Pb About 50 Single particle energies with “errors” ranging from 2.0 MeV for 16 O to 0.5 MeV for 208 Pb.
15
Alex Brown PREX Aug-17-2008 1998 - Skx - fit to these data Fitted parameters: t 0 t 1 t 2 t 3 x 0 x 1 x 2 x 3 W (spin orbit term) t 0s (isospin symmetry breaking) Vary α (power of the density dependence) by hand minimum at α = 0.5 (K=270 nuclear matter incompressibility) t 0 t 0s t 1 t 2 t 3 x 0 and W well determined from exp data x 3 depends on neutron EOS x 1 and x 2 not determined
16
Alex Brown PREX Aug-17-2008 Skx – single-particle energies Single-particle states from the Skyrme potential of the close-shell nucleus (A) are associated with experimental values for the differences -[BE(A) - BE(A-1)] or = -[BE(A+1)-BE(A)] based on the HF model The potential spe are typically within 200 keV of those calculated from the theoretical values for -[BE(A) - BE(A-1)] or = -[BE(A+1)-BE(A)] No time-odd type interactions, but time-odd contribution to spe are typically not more than 200 keV (Dobascewski, Duguet)
17
Alex Brown PREX Aug-17-2008 Skx Skyrme single-particle energies - implies that (m*/m)=1.00
18
Alex Brown PREX Aug-17-2008 Skx Skyrme single-particle energies
19
Alex Brown PREX Aug-17-2008 1998 - Neutron EOS and neutron skin -- x 3 How can we constrain the neutron equation of state? Friedman-Pandharipanda neutron EOS - Phys. Rev. C33, 335 (1986)
20
Alex Brown PREX Aug-17-2008 Nuclear charge densities
21
Alex Brown PREX Aug-17-2008
23
Neutron density for 208 Pb Shows the shell layers (Dashed line is the proton density)
24
Alex Brown PREX Aug-17-2008
25
Diffuseness of the charge density is correlated with nuclear matter incompressibility Best fit to charge density requires K=200-230 MeV Skx-s20(5) takes α = 1/6 Which gives K=200 Phys. Rev. C 76, 034305 (2007). Ratios of charge densities (Skm*)
26
Alex Brown PREX Aug-17-2008 0.25 0.20 0.15 S (fm) Phys. Rev. C 76, 034305 (2007). Ratios of neutron densities (Skm*)
27
Alex Brown PREX Aug-17-2008 0.25 0.20 0.15 S (fm) K=200 MeV for nuclear matter incompressibility α = 1/6 Phys. Rev. C 76, 034305 (2007). Skx for charge density diffuseness and neutron skin
28
Alex Brown PREX Aug-17-2008 Assumption about neutron matter effective mass (m*/m)=1.00 used as a fit constraint
29
Alex Brown PREX Aug-17-2008 -0.5 to 0.5 -1.0 to 1.0
30
Alex Brown PREX Aug-17-2008
31
Ab-initio low-density value A. Gezerlis and J. Carlson, PRC77, 032801 (2008) also important to get low-density part right (Andrew Steiner…)
32
Alex Brown PREX Aug-17-2008 BE( 132 Sn)-BE( 100 Sn) (MeV) 277 278 282 283 284 291 296 299 Exp = 278(1)
33
Alex Brown PREX Aug-17-2008 K=270 α =1/2 S=0.25 K=200 α = 1/6 S=0.20 So next step would be to introduce two α values One for nuclear matter and another for the symmetry potential
34
Alex Brown PREX Aug-17-2008
35
Data for Skx BE for 16 O, 24 O, 34 Si, 40 Ca, 48 Ca, 48 Ni, 68 Ni, 88 Sr, 100 Sn, 132 Sn and 208 Pb with “errors” ranging from 1.0 MeV for 16 O to 0.5 MeV for 208 Pb rms charge radii for 16 O, 40 Ca, 48 Ca, 88 Sr and 208 Pb with “errors” ranging from 0.03 fm for 16 O to 0.01 fm for 208 Pb About 50 Single particle energies with “errors” ranging from 2.0 MeV for 16 O to 0.5 MeV for 208 Pb.
36
Alex Brown PREX Aug-17-2008
38
122 Zr S BE (fm) (MeV) 0.15 -928.6 0.20 –931.3 0.25 –934.2
39
Alex Brown PREX Aug-17-2008 S (fm) = 0.12 0.16
40
Alex Brown PREX Aug-17-2008 Participating Institutions and Co-Investigators: Ames National Laboratory - Sosonkina ANL - Pieper, Wiringa, Lusk, Moré, Norris Lawrence Berkeley National Laboratory - Ng, Yang LLNL - Escher, Navratil, Ormand, Thompson Los Alamos National Laboratory - Carlson, Kawano ORNL - Arbanas, Dean, Nazarewicz, Fann, Roche, Shelton Central Michigan University - Horoi Iowa State University - Vary Michigan State University - Brown, Bogner University of North Carolina at Chapel Hill - Engel Ohio State University - Furnstahl San Diego State University - Johnson University of Tennessee - Bertulani, Papenbrock University of Washington - Bertsch, Bulgac Funding Partners: Office of Science, Advanced Scientific Computing Research, and National Nuclear Security Agency SciDAC -Building a universal energy density functional
41
Alex Brown PREX Aug-17-2008 Nuclear Structure Theory - Confrontation and Convergence (AI) Ab initio methods with NN and NNN (CI) Shell model configuration interactions with effective single-particle and two-body matrix elements (DFT) Density functionals plus GCM… My examples with Skyrme Hartree-Fock (Skx) Cluster models, group theoretical models ….. Good – most “fundamental” Bad – only for light nuclei, need NNN parameters, “complicated wf” Good – applicable to more nuclei, 150 keV rms, “good wf” Bad – limited to specific mass regions and E x, need effective spe and tbme for good results Good – applicable to all nuclei Bad – limited mainly to gs and yrast, 600 keV rms mass, need interaction parameters Good – simple understanding of special situations Bad – certain classes of states, need effective hamiltonian Each of these has its own computational challenges
42
Alex Brown PREX Aug-17-2008 Mihai Horoi Thomas Duguet Werner Richter Taka Otsuka D. Abe T. Suzuki Funding from the NSF Collaborations
43
Alex Brown PREX Aug-17-2008 Skx Skyrme Interaction
44
Alex Brown PREX Aug-17-2008 Displacement energy requires a new parameter
45
Alex Brown PREX Aug-17-2008 Skx - fit to all of these data Fit done by 2p calculations for the values V and V+epsilon of the p parameters. Then using Bevington’s routine for a “fit to an arbitrary function”. After one fit, iterate until convergence – 20-50 iterations. 10 nuclei, 8 parameters, so each fit requires 2000-5000 spherical calculations. Takes about 30 min on the laptop. Goodness of fit characterized by CHI with best fit obtained for “Skx” with CHI=0.6
46
Alex Brown PREX Aug-17-2008 Rms charge radii
47
Alex Brown PREX Aug-17-2008
49
114 Sn to 115 Sb proton spectroscopic factors
50
Alex Brown PREX Aug-17-2008 For Skxtb α t = -118, β t = 110 For Skxta α t = 60, β t = 110 For Skx α t = 0, β t = 0
51
Alex Brown PREX Aug-17-2008 Skx – fit to single-particle energies
52
Alex Brown PREX Aug-17-2008 Skx with G matrix tensor CHI jumps up from 0.6 to 1.5 due to spe
53
Alex Brown PREX Aug-17-2008 normal spin-orbit tensor terms
54
Alex Brown PREX Aug-17-2008 A α β δ γ ε η θ κ λ μ ν π ρ σ τ υ φ χ ψ ω A Ώ Γ Δ Λ Π Σ Φ Ψ Ω
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.