Download presentation
Published byErnest Wilkins Modified over 9 years ago
1
Can one measure the Neutrino Mass in the Double Beta Decay ?
Fest-Colloquium for the 60. Birthday of Jochen Wambach. Can one measure the Neutrino Mass in the Double Beta Decay ? Amand Faessler, University of Tuebingen
2
FAESSLER; GSI 16. November 2010
Preparation for the legendary Football Game in Jülich against Solar Energy ~1977 Müther Baur Meyer ter Vehn Wambach FAESSLER; GSI 16. November 2010
3
The successful Nuclear Physics Football Team in Jülich-Broich ~1975
Müther, Grümmer Krewald Wambach Faessler Meyer ter V. K. W. Schmid Baur Osterfeld FAESSLER; GSI 16. November 2010
4
FAESSLER; GSI 16. November 2010
Jochen Wambach * July Studies at Univ. Bonn Dipl. + Ph. D. in Jülich/Bonn Stony Brook Univ. Illinois 1990 Full Prof. Univ. Bonn + Vice-Director Jülich Full Prof. TU Darmstadt Head Theory Group Hadrons + QCD at GSI. FAESSLER; GSI 16. November 2010
5
Honors and Service of Jochen Wambach
Fellow of American Phys. Soc. Senat of DFG Editor: European J. of Phys. A Editor: Phys. Rev. Lett. Member of many National and International Committees. FAESSLER; GSI 16. November 2010
6
SPIRES: Famous Publication
„Famous paper“ with 436 citations with R. Rapp:Chiral Symmetry Restoration and Dileptons in Relativistic HI Collisions. Published in Annals of Physics 2000. 1) Cooperstein, Wambach: Electron capture in Stellar Collaps ; Nucl. Phys. A420(1984) 2) Chanfray, Rapp, Wambach: Medium Modifications of the r Meson at SPS Energies; Phys. Rev. Lett. 76 (1996) FAESSLER; GSI 16. November 2010
7
FAESSLER; GSI 16. November 2010
1) What triggers the presupernova stellar collaps? Wambach, Cooperstein. Nucl. P.A420(1984) Electrons Iron Core 26Fe30 Energy e- Protons Neutrons g9/2 P1/2 f5/2 Fermi Surface P3/2 f7/2 Bethe+Brown 1979: e- + p f7/2 n f5/2 + ne Fuller soon blocked 1982: n f5/2 full Wambach 1984: Thermal unblocking: p g9/2 n g9/2 ; p g9/2 n g7/2 FAESSLER; GSI 16. November 2010
8
FAESSLER; GSI 16. November 2010
2) Propagation of the r-Meson in hot and dense Nuclear Matter (CERES Data) Wambach et al. Phys. Rev. Lett. 76 (1996)436 Model for r-Meson Model for r-Meson p-Meson p-Meson Pion propagation in hot and dense nuclear matter: p-Meson p-Meson N N-1 ; D N-1 ; N D-1 ; D D-1 FAESSLER; GSI 16. November 2010
9
Explanation of the CERES-Dilepton-Data CERN PPE 1995
Vector Meson Dominance r g e+ e- Modified r Bare r meson Mass of modified r-Meson FAESSLER; GSI 16. November 2010
10
Can one measure the Neutrino Mass in the 0n Double Beta Decay ?
Fest-Colloquium for the 60. Birthday of Jochen Wambach July Amand Faessler, University of Tuebingen
11
FAESSLER; GSI 16. November 2010
Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular Momentum in b-Decay. FAESSLER; GSI 16. November 2010
12
FAESSLER; GSI 16. November 2010
Reines and Cowen and the Neutrino-Detection (1956 at Savanna River Reactor) FAESSLER; GSI 16. November 2010
13
FAESSLER; GSI 16. November 2010
Detection of the Neutrino 1955/56: by Fred Reines and Clyde Cowen FAESSLER; GSI 16. November 2010
14
FAESSLER; GSI 16. November 2010
1) Mainz + Troisk Triton Beta-Decay mn < 2.3 eV FAESSLER; GSI 16. November 2010
15
1)Mass of the Electron Neutrino? Tritium decay (Mainz + Troitsk)
Mainz + Troisk Triton Beta-Decay mn < 2.3 eV FAESSLER; GSI 16. November 2010
16
Upper limit of Neutrino mass from the Mainz( Troisk) Experiment
Results with Gaussian error 95 % confidence limit <m n> < 2.3 eV 5% <m neff>2 [eV2] -0.6 (2.3 eV)2 FAESSLER; GSI 16. November 2010
17
Tranformation from Mass to Flavor Eigenstates
FAESSLER; GSI 16. November 2010
18
FAESSLER; GSI 16. November 2010
A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; GSI 16. November 2010
19
2) Neutrino Mass from Astrophysics:
Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) h = 0.71 FAESSLER; GSI 16. November 2010
20
FAESSLER; GSI 16. November 2010
k = 2p/l [(h=0.71)/ Mpc] FAESSLER; GSI 16. November 2010
21
FAESSLER; GSI 16. November 2010
W0 = WL= Wb= H0 = 72[km/(sec*Mpc] ns = Wn = 0 Cosmic Background Radiation 0.01 FAESSLER; GSI 16. November 2010
22
FAESSLER; GSI 16. November 2010
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0.05 0.01 FAESSLER; GSI 16. November 2010
23
FAESSLER; GSI 16. November 2010
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0.1 0.01 FAESSLER; GSI 16. November 2010
24
FAESSLER; GSI 16. November 2010
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0.25 0.01 FAESSLER; GSI 16. November 2010
25
FAESSLER; GSI 16. November 2010
26
FAESSLER; GSI 16. November 2010
WMAP = Wilkinson Microwave Anisotropy Probe. ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) CBI = Cosmic Background Imager (CALTEC) 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; GSI 16. November 2010
27
3) Neutrino mass from Oνββ-Decay (forbidden in Standard Model)
P e1 P Left ν Phase Space 106 x 2νββ Left n n n = nc Majorana Neutrino Neutrino must have a Mass FAESSLER; GSI 16. November 2010
28
FAESSLER; GSI 16. November 2010
GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; GSI 16. November 2010
29
Grand Unified left-right Symmetry
Proton Proton Neutron Neutron Neutron Proton Neutron Proton Proton Neutron First and Third Diagram ~ Neutrino Mass Neutron Proton FAESSLER; GSI 16. November 2010
30
Supersymmetric Diagrams for the Neutrinoless Double Beta decay.
Neutron Proton l‘111 Lightest SUSY Particle (LSP) c g~, h1~; h2~; W~ LSP c + g~ l‘111 Neutron Proton l‘111 FAESSLER; GSI 16. November 2010
31
FAESSLER; GSI 16. November 2010
Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef k 0+ P P e2 k 1+ e1 k 2- ν Ek n n Ei 0+ 0+ 0νββ FAESSLER; GSI 16. November 2010
32
V. Rodin, F. Simkovic, S. Yousef, D. L. Fang, A. Escuderos
The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model QRPA starts with Pairing: V. Rodin, F. Simkovic, S. Yousef, D. L. Fang, A. Escuderos FAESSLER; GSI 16. November 2010
33
Neutrinoless Double Beta- Decay Probability
FAESSLER; GSI 16. November 2010
34
Effective Majorana Neutrino-Mass for the 0nbb-Decay
Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT FAESSLER; GSI 16. November 2010
35
Neutrinoless Double Beta- Decay Probability
FAESSLER; GSI 16. November 2010
36
QRPA (TUE), Shell Model (Madrid-Strasburg), IBM2, PHFB
Different axial charges; gA Forces; Bonn CD; Argonne V18 Different Basis Sizes Short Range Correlations: Jastrow Fermi Hypernetted Unitary Correlator Operator Metod Brueckner QRPA and Renormalized-QRPA P-HFB-GCM PHFB+GCM
37
FAESSLER; GSI 16. November 2010
Rodriguez, Martinez-Pinedo: projected-HFB, Gogny force, GCM; arXiv ; beta(Nd) = 0.35; beta(Sm) = 0.21 Fang, Faessler, Rodin, Simkovic: Phys. Rev. C82, (2010) 150Nd b=0.24 150Sm: b= 0.15 <BCSi|BCSf> = 0.52; M0nbb = 3.16 FAESSLER; GSI 16. November 2010
38
FAESSLER; GSI 16. November 2010
Rodriguez, Martinez-Pinedo Energy Density functional + Generator Coordinate Method FAESSLER; GSI 16. November 2010
39
FAESSLER; GSI 16. November 2010
Quasi-Particle Random Phase Approach (QRPA; Tübingen). Shell Model Caurier et al. Angular Momentum Projected Hartee-Fock-Bogoliubov (Tübingen; P. K. Rath et al.; Rodriguez & Martinez-Pinedo+GCMb). Interacting Boson Model (Barea+Iachello) Which Angular Momentum Jp Neutron Pairs contribute to the Neutrinoless Double Beta decay? FAESSLER; GSI 16. November 2010
40
FAESSLER; GSI 16. November 2010
QRPA all the Ring digrams: Ground State: 0, 4, 8, 12 , … quasi- particles (seniority) 4 8 b) The Shell Model Ground state: 0, 4, 6, 8, …. 6 Problem for SM: Size of the Single Particle Basis. FAESSLER; GSI 16. November 2010
41
FAESSLER; GSI 16. November 2010
Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State FAESSLER; GSI 16. November 2010
42
Basis Size Effect for 82Se on the Neutrinoless Double Beta Decay.
4levels (Shell Model): 1p3/2, 0f5/2, 1p3/2, 0g9/2 4levels: Ikeda Sum rule 50 % 6levels: 0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2; Ikeda 100% 9levels:0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2, 1d5/2, 2s1/2, 1d3/2 FAESSLER; GSI 16. November 2010
43
FAESSLER; GSI 16. November 2010
Contribution of Higher Angular Momentum Pairs in Projected HFB (Tübingen). HFB 0bbn Particle number and angular momentum projection before the variation; Gogny force; Axial symmetric deformation; No parity mixing; real coefficients of the Bogoliubov transformation IBM: = 0+ and 2+ Pairs FAESSLER; GSI 16. November 2010
44
FAESSLER; GSI 16. November 2010
QRPA (TUE), Shell Model (Madrid-Strassburg), IBM2 (Iachello), PHFB (P. Rath) FAESSLER; GSI 16. November 2010
45
FAESSLER; GSI 16. November 2010
HD claim for Detection of 0n DBD hep-ph/ Exp.Heidelberg-Moscow: Klapdor and coworkers in Heidelberg claim, they have detected 0nbb of 76Ge Source = Detector 10.9 kg 86% enriched 76Ge from 8 % natGe in Russia Spectrum with 71.7 kg•y Q(0nbb) = 2038 keV FAESSLER; GSI 16. November 2010
46
FAESSLER; GSI 16. November 2010
Neutrino Mass from 0nbb Experiment Heidelberg-Moskau: Klapdor‘s et al. Claim 76Ge Mod. Phys. Lett. A21,1547(2006) ; T(1/2; 0nbb) = ( ) x 1025 years; 6s Matrix Elements: QRPA Tuebingen <m(n)> = [eV] (exp+-0.02; theor+-0.01) [eV] FAESSLER; GSI 16. November 2010
47
FAESSLER; GSI 16. November 2010
Summary QRPA seems presently a reliable method Shell Model: to small basis IKEDA sum rule violated by 50% Projected Hartree Fock Bogoliubov: Pairing +Quadrupole and Gogny force; mainly 0+ neutron pairs change in proton pairs. Interacting Boson Model: Changes only s(0+) and d(2+) neutron pairs into protons pairs. To prove the mass mechanism is leading, one needs to measure several nuclear systems. Only if proved, the neutrino mass can be measured in the neutrinoless Double BetaDecay. THE END FAESSLER; GSI 16. November 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.