Download presentation
Presentation is loading. Please wait.
Published byNancy Fields Modified over 9 years ago
1
Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO) Conceptual Design Review for PRIMA @Lorentz Center, Leiden on 29 Sep., 2004 PRIMA Astrometric Observations Polarization effects Technical Report AS-TRE-AOS-15753-0011 Frosty LeoCW Leo
2
- OUTLINE - 1. Introduction Why instrumental polarization analysis? 2. Effects of phase error on astrometry Operation principle of the FSU 3. Polarization properties of PRIMA optics Basic concepts of polarization model
3
Introduction Why instrumental polarization analysis? changes phase and amplitude VLT telescope, StS, base line, etc (telescope pointing, separation, station…) the fringe sensor unit detects a wrong phase delay. provide an error in astrometry what kind of error? (< /100?)
4
What we have to do? Establish a strategy of analysis Study the operation principle of FSU Make a polarization model of VLTI optics Analysis Fringe detection by FSU polarization model analysis of VLTI optics telescope, StS, base line optics time evolution (as a function of hour angle) difference between the ref. and the obj.
5
The Operation Principle of the Fringe Sensor Unit Alenia Co., VLT-TRE-ALS-15740-0004
6
The original ABCD Algorithm Complex Amplitude E A = - (P 1 -P 2 ) E B = (S 1 +S 2 ) E C = (P 1 +P 2 ) E D = - (S 1 -S 2 ) Identical polarization S 1 = expi(kL opl,1 ) S 2 = expi(kL opl,2 ) P 1 = expi(kL opl,1 ) P 2 = expi(kL opl,2 + /2) k: wave number (k=2 / ) L opl,i : optical path length at the station i
7
The original ABCD Algorithm ABCD signals I A = 2| | 2 {1+sin(kL opd )} I B = 2| | 2 {1+cos(kL opd )} I C = 2| | 2 {1-sin(kL opd )} I D = 2| | 2 {1-cos(kL opd )} Visibility V = 1/2(I A +I B +I C +I D )=4| | 2 Phase delay = kL opd = arctan(I A -I C /I B -I D ) L opd : optical path difference L opd = L opl,1 - L opl,2 The phase delay can be measured with a simple way.
8
The original ABCD Algorithm Complex Amplitude E A = - (P 1 -P 2 ) E B = (S 1 +S 2 ) E C = (P 1 +P 2 ) E D = - (S 1 -S 2 ) Different polarization S 1 = S 1 expi(kL opl,1 ) S 2 = S 1 expi(kL opl,2 ) P 1 = P 1 expi(kL opl,1 ) P 2 = P 1 expi(kL opl,2 + /2) k: wave number (k=2 / ) L opl,i : optical path length at the station i
9
The original ABCD Algorithm ABCD signals I A = 2| P 1 | 2 {1+sin(kL opd )} I B = 2| S 1 | 2 {1+cos(kL opd )} I C = 2| P 1 | 2 {1-sin(kL opd )} I D = 2| S 1 | 2 {1-cos(kL opd )} Visibility V = 1/2(I A +I B +I C +I D ) = 2| | 2 (|P 1 | 2 +|S 1 | 2 ) Phase delay = kL opd = arctan(I A -I C /I A +I C * I B +I D /I B -I D ) L opd : optical path difference L opd = L opl,1 - L opl,2 The phase delay can be measured not affected by different polarization status between S and P.
10
A Modified ABCD Algorithm Complex Amplitude E A = - (P 1 -P 2 ) E B = (S 1 +S 2 ) E C = (P 1 +P 2 ) E D = - (S 1 -S 2 ) Different polarization S 1 = S 1 expi(kL opl,1 ) S 2 = S 2 expi(kL opl,2 ) P 1 = P 1 expi(kL opl,1 + S ) P 2 = P 2 expi(kL opl,2 + P + /2) Different polarization between beam 1 and 2 phase S = S,2 - S,1, and P = P,2 - P,1 amplitude S 2 ≠S 1, P 2 ≠P 1
11
A Problem on the ABCD Algorithm ABCD signals I A = | | 2 {P 1 2 +P 2 2 +2P 1 P 2 sin(kL opd + P )} I B = | | 2 {S 1 2 +S 2 2 +2S 1 S 2 cos(kL opd + S )} I C = | | 2 {P 1 2 +P 2 2 -2P 1 P 2 sin(kL opd + P )} I D = | | 2 {S 1 2 +S 2 2 -2S 1 S 2 cos(kL opd + S )} The ABCD algorithm tells a wrong phase delay.
12
A Modified ABCD Algorithm Get another sampling with a /2(= /4) step I A0 = | | 2 {P 1 2 +P 2 2 +2P 1 P 2 sin(kL opd + P )} I A1 = | | 2 {P 1 2 +P 2 2 +2P 1 P 2 cos(kL opd + P )} I C0 = | | 2 {P 1 2 +P 2 2 -2P 1 P 2 sin(kL opd + P )} I C1 = | | 2 {P 1 2 +P 2 2 -2P 1 P 2 cos(kL opd + P )} only P-polarization is described above. assume fixed P 1 and P 2
13
A Modified ABCD Algorithm & Polarization Effects Phase delay P = kL opd + P = arctan(I A0 -I C0 /I A1 +I C1 ) S = kL opd + S = arctan(I B0 -I D0 /I B1 +I D1 ) The FSU may correct (detect) 1/2( P + S ) = kL opd +1/2( P + S ) Instrumental polarization between two beams cannot be principally corrected. a phase delay of | S - P | still remains.
14
Impact on Astrometry - Polarization Effects on Object - Visibility of the object V = = + + + + + E S,1 = S 1 expi(kL opl,1 ’) E S,2 = S 2 expi(kL opl,2 ’+ S ’) E P,1 = P 1 expi(kL opl,1 ’+ SP ’) E P,2 = P 2 expi(kL opl,2 ’+ SP ’+ P ’)
15
Impact on Astrometry - Polarization Effects on Object - Cross correlation + = 2S 1 S 2 + = 2S 1 P 1 + = 2S 1 P 2 + = 2S 2 P 1 + = 2S 2 P 2 + = 2P 1 P 2
16
Impact on Astrometry - Polarization Effects on Object - Visibility of the unpolarized object V = = + + + +2 +2 Because of =0….unpolarized light Astrometry of the unpolarized object k(L opd -L opd ’)+{( S - P )-( S ’- P ’)} = kL BL sin +{( S - P )-( S ’- P ’)} … : astrometry
17
Impact on Astrometry - Summary - 1.Operation principle of FSU Phase delay measurement not affected by polarization status of the reference. A modified ABCD algorithm to calibrate instrumental polarization 2. Impact on astrometry {( S - P )-( S ’- P ’)} gives error in astrometry Similar beam combiner to the FSU is encouraged to science instrument
18
Polarization Model Optics can work as a phase retarder or a polarizer S o = J S i … S: Stokes parm, J: Jones matrix S f = J N J N-1 …J 1 S * Grouping J tel (Az(h), El(h), r, ,, St): telescope optics J StS (r, , ): star separator optics J BL (, St): base line optics Model S f = J BL J StS J tel S *
19
Future Activities 1. Telescope optics (J tel ) time evolution: | S - P |(h, Dec, r, ) 2. Star separator optics (J StS ) | S - P |(r) 3. Base line optics (J BL ) | S - P |(St) 4. Color dependence opd ( ), I x ( )@FSU, group delay
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.