Presentation is loading. Please wait.

Presentation is loading. Please wait.

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period.

Similar presentations


Presentation on theme: "Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period."— Presentation transcript:

1 Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period and the object’s maximum speed both double 2. the oscillation period remains the same and the object’s maximum speed doubles 3. the oscillation period and the object’s maximum speed both remain the same 4. the oscillation period doubles and the object’s maximum speed remains the same 5. the oscillation period remains the same and the object’s maximum speed increases by a factor of 21/2

2 A13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period and the object’s maximum speed both double 2. the oscillation period remains the same and the object’s maximum speed doubles 3. the oscillation period and the object’s maximum speed both remain the same 4. the oscillation period doubles and the object’s maximum speed remains the same 5. the oscillation period remains the same and the object’s maximum speed increases by a factor of 21/2

3 Q13.2 This is an x-t graph for an object in simple harmonic motion. At which of the following times does the object have the most negative acceleration ax? 1. t = T/4 2. t = T/2 3. t = 3T/4 4. t = T

4 A13.2 This is an x-t graph for an object in simple harmonic motion. At which of the following times does the object have the most negative acceleration ax? 1. t = T/4 2. t = T/2 3. t = 3T/4 4. t = T

5 Q13.3 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the velocity versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV

6 A13.3 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the velocity versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV

7 Q13.4 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the acceleration versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV

8 A13.4 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the acceleration versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV

9 Q13.5 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the potential energy of the spring the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above

10 A13.5 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the potential energy of the spring the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above

11 Q13.6 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the kinetic energy of the object the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above

12 A13.6 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the kinetic energy of the object the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above

13 Q13.7 A simple pendulum consists of a point mass suspended by a massless, unstretchable string. If the mass is doubled while the length of the string remains the same, the period of the pendulum 1. becomes 4 times greater 2. becomes twice as great 3. becomes 21/2 times greater 4. remains unchanged 5. decreases

14 A13.7 A simple pendulum consists of a point mass suspended by a massless, unstretchable string. If the mass is doubled while the length of the string remains the same, the period of the pendulum 1. becomes 4 times greater 2. becomes twice as great 3. becomes 21/2 times greater 4. remains unchanged 5. decreases


Download ppt "Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period."

Similar presentations


Ads by Google