Download presentation
1
How Does DNA Copy Itself?
12.3 DNA Replication How Does DNA Copy Itself?
2
DNA Replication – What and Why
Replication = DNA making copies of itself DNA must be copied before a cell can divide Each new cell will have a complete set of DNA
3
History of Replication
Watson & Crick – realized that complementary base pairing provided a way for DNA to copy itself - base pairing could allow a new strand to be built on an old strand - 3 possible models of DNA replication
4
3 Models of Replication: Semi-conservative Replication
Each strand in a DNA molecule is used as a template to build a new strand using complementary base pairing Results in new molecule with one original DNA strand and one new strand
5
3 Models of Replication: Conservative Replication
Leaves the original DNA intact and produces another molecule of DNA identical to the first
6
3 Models of Replication: Dispersive Replication
Creates two molecules that are a mix of new and old DNA interspersed along each strand of the molecule
7
The Question is Answered
1957 Matthew Meselson & Franklin Stahl -conducted an experiment proving replication is semiconservative - each DNA molecule has one new strand and one old strand
8
DNA Replication: Process
@Replication begins when the enzyme DNA helicase opens the DNA forming replication
9
DNA Replication: Process
Multiple replication bubbles are opened simultaneously allows the molecule to be replicated quickly
10
DNA Replication: Process
The nitrogen bases on the original DNA strands are exposed in the replication bubbles. They serve as a template to build new DNA strands
11
DNA Replication The ends of the replication bubbles known as the
replication fork is where replication begins
12
DNA Replication – DNA Polymerase
@The enzyme DNA polymerase brings new nucleotides to the replication - it pairs them according to base pairing rules A pairs with T C pairs with G
13
DNA Replication – Leading Strand
The process of replication proceeds from 5’ to 3’ leading strand- replication is continuous – it is built toward the replication fork Up to 1000 base pairs/ second
14
DNA Replication – Lagging Strand
lagging strand- replication occurs in short segments - called Okazaki fragments - the new DNA strand grows away from the replication fork
15
DNA Replication- The Big Picture
Each Bubble has 2 Forks – each fork has a leading and lagging strand
16
DNA Replication The process continues until 2 complete copies of the DNA are produced @Each copy of the DNA has 1 strand of DNA from the original DNA and one new strand that was produced by Known as semi-conservative replication
17
DNA Replication
18
DNA Replication
19
Telomeres The tips of chromosomes are known as telomeres.
Over time, DNA may actually be lost from telomeres each time a chromosome is replicated. @An enzyme, telomerase, solves this problem by adding short, repeated DNA sequences to
20
Prokaryotes vs. Eukaryotes
Prokaryotes- starts from a single point and goes in two directions until the entire chromosome is copied. Eukaryotes- replication begins at dozens or even hundreds of spots on the DNA, going in both directions until each chromosome is completely copied.
21
Which enzyme is used to separate the DNA?
Helicase Ligase Polymerase Telomerase
22
Which enzyme adds nucleotides to the strands?
Helicase Ligase Polymerase Telomerase
23
Which enzyme prevents DNA from being lost during replication?
Helicase Ligase Polymerase Telomerase
24
How is Prokaryotic DNA different from Eukaryotic?
Prokaryotic DNA is circular and replication begins at 1 point. Eukaryotic DNA is linear and replication begins at many points.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.