Download presentation
Presentation is loading. Please wait.
Published byEric Goodwin Modified over 9 years ago
1
In-Gas Laser Ionization and Spectroscopy of Ac: A quest for the atomic and nuclear structure of heavy elements Rafael Ferrer KU Leuven, Instituut voor Kern- en Stralingsfysica Belgium R. Ferrer · ECT*, The interplay between atomic and nuclear physics to study exotic nuclei, August 24-27, 2015
2
In-Gas Laser Ionization and Spectroscopy of RIB’s Yu. Kudryavtev et al., NIM B 114 (1996) 350 M. Facina et al., NIM B 226 (2004) 401 excimer 1 excimer 2 dye reference cell He-Ne λ-meter gas cell CYCLONE 110 cyclotron beam SPIG target accel. optics dipole magnet tape station / windmill collector plates SHG SEM Ionization chamber Laser Hut dye ~ 15 m measuring station: Max. rep.: 200 Hz λ1λ1 λ2λ2 Leuven Isotope Separator On-Line facility In-gas-cell laser spectroscopy of neutron deficient Cu, Ag and Ac isotopes T. E. Cocolios et al., PRL 103 (2009) 102501 T. E. Cocolios et al., PRC 81 (2010) 014314 R. Ferrer. et al., PLB 728 (2014) 191 R. Ferrer · ECT*, August 24-27, 2015 ·
3
Production & First Spectroscopy of Ac 212-215 Ac Blaum, Dilling, Noertershaeuser, Phys. Scr. T152 (2013) 014017 total ~1 % I.P. 43394.45 cm -1 2 D 3/2 4 P 5/2 418.312 nm 439.21 nm g.s. continuum 23898.86 cm -1 46660.6 cm -1 J. Rossnagel et al., PRA 85 (2012) 012525 197 Au( 20 Ne-145 MeV,4-5n) 212,213 Ac 197 Au( 22 Ne-143 MeV,4-5n) 214,215 Ac X 2 D 3/2 4 P 3/2 5/2 438.58 nm 434.7 nm g.s. continuum 22801.1cm -1 46810.cm -1 I.P. 43394.45 cm -1 R. Ferrer · ECT*, August 24-27, 2015 ·
4
HFS of 212-215 Ac - 438 nm transition - Pressure shift and broadening 227 Ac 226 Ac 225 Ac 215 Ac 214 Ac 213 Ac 212 Ac TRIUMF R. Ferrer · ECT*, August 24-27, 2015 ·
5
Odd-A Nuclei and Isotope Shifts In order to determine mean charge radii: - Calculate electronic factor and specific mass shift - Use King plot to test calculations - Proton g-factors of 213,215 Ac consistent with observed trend for spin 9/2 - Spin 3/2 for 225 Ac only possibility according to observed hfs - Spin 1 for 226 Ac according to observed hfs PhD Thesis Camilo Granados Resolution insufficient to determine spectroscopic quadrupole moment Spin determination relies on trends Higher resolution needed R. Ferrer · ECT*, August 24-27, 2015 ·
6
In-Gas-Jet Spectroscopy Yu. Kudryavtsev et al., NIM B 297 (2013) 7 T. Sonoda et al. NIM B267 (2009) 2918 R. Ferrer et al, NIM B 291 (2012) 29 Ti:sa λ-meter gas cell CYCLONE 110 cyclotron beam SPIG target accel. optics dipole magnet detector station collector plates SEM SHG Nd:YAG Diode Ti:sa SHG ionization volume Rep. rate 10 kHz Figures of merit: Resolution ~ 5e-7 (FWHM~ 400 MHz) Selectivity ~ 200 Efficiency ~ 0.5% R. Ferrer · ECT*, August 24-27, 2015 ·
7
Observed spectral widths jet T and jet divergence, and laser power Reduction energy up to 80 nJ singlet FWHM~300 MHz, mainly Gaussian contribution In-Gas-Jet Spectroscopy of 214,215 Ac Doppler Broadening (MHz)Velocity (m/s) y (mm) X (mm) y (mm) Improve spatial overlap to increase efficiency 1/10 to 10/10 Design of a better nozzle and characterization of gas jets off-line HELIOS lab at KU Leuven In-jet spectroscopy results in: an improvement in uncertainties of isotope shifts and magnetic hf constant A access to B quadrupole moments hfs triplet in 214 Ac R. Ferrer · ECT*, The interplay between atomic and nuclear physics to study exotic nuclei, August 24-27, 2015
8
214 Ac T 1/2 = 8.2 s Data Analysis 214 Ac CoG 25-fold improved uncertainties in CoG and hf constant A wrt gas cell results 10 times smaller quadrupole moment than that in 227 Ac R. Ferrer · ECT*, August 24-27, 2015 ·
9
Data Analysis 215 Ac 215 Ac T 1/2 = 170 ms CoG Isotope shift 215,214 = 2998(8) MHz Small quadrupole moment N=126 good magic number error in dominated by error of 227 Ac input from theory is required R. Ferrer · ECT*, August 24-27, 2015 ·
10
Bi At Fr Ac Situation for N= 126 Isotones M. R. Pearson et al., J. Phys. G 26 (2000) 1829 Shell model predictions are in good agreement with experimental quadrupole moments Proton g-factor of 215 Ac might indicate core polarization effect
11
Acknowledgments AND THANK YOU ALL FOR YOUR ATTENTION Collaborators JYFL University of Jyväskylä: I. Moore, V. Sonnenschein GANIL- IPN Orsay – LPC Caen: B. Bastin, D. Boilley, Ph. Dambre, P. Delahaye, P. Duchesne, X. Fléchard, S. Franchoo, L. Hijazi, N. Lecesne, H. Lu, F. Lutton, Y. Merrer, B. Osmond, J. Piot, O. Pochon, H. Savajols, J. C. Thomas, E. Traykov RILIS-ISOLDE: S. Rothe TRIUMF: P. Kunz, J. Lassen, A. Teigelhoefer University of Mainz: R. Heinke, T. Kron, P. Nauberreit, P. Schoenberg, K. Wendt GSI: M. Block, M. Laatiaoui P. Creemers, R. de Groote, L.P. Gaffney, L. Ghys, C. Granados, M. Huyse, Yu. Kudryavtsev, Y. Martínez, E. Mogilevskiy, S. Raeder, S. Sels, P. Van den Bergh, P. Van Duppen, A. Zadvornaya KU Leuven
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.