Download presentation
Presentation is loading. Please wait.
Published byChristopher Jonah Potter Modified over 9 years ago
1
Concours CNRS CR2, Section 19. Meudon, 17 Mars 2010 Irina Gorodetskaya Candidate for Laboratoire de Glaciologie et Géophysique de l’Environnement, (UMR 5183 CNRS, Université Joseph Fourier-Grenoble) Cryosphere Clouds Understanding Clouds and Their Effects on Radiative Budget and Precipitation in the Present and Future Polar Climate using model simulations and observations
2
Motivation CLOUDS ? Arctic sea ice decline! 2007 x x 2008 ? Credit: NSIDC Arctic September sea ice extent 2009 x Relative annual mean precipitation change on the Antarctic ice sheet during the 21st century Krinner et al. 2007 Antarctic precipitation increase?
3
The role of clouds in the Arctic sea ice decline Gorodetskaya and Tremblay 2008, AGU monograph “Arctic sea ice decline” PhD at Lamont-Doherty Earth Observatory, Columbia University 2002-2007 : My Background CCSM3 A1B
4
Model simulations of present and future Antarctic climate and sfc mass balance My Background Postdoctorat at Laboratoire de Glaciologie et Géophysique de l’Environnement November 2007 - present: supervisors: H. Gallée and G. Krinner Surface air temperature difference between the two models: MAR nested in LMDZ Gorodetskaya, Gallée, Krinner, in prep Large-scale model (LMDZ) Mesoscale model (MAR) 1981-1989 annual mean
5
Postdoctorat at K. U. Leuven, Belgium August 2009 - present: Clouds and hydrologic cycle of Antarctica supervisor: N. van Lipzig My Background AWS Phase 1 : meteorological and cloud measurements at the new Belgian Antarctic Station (Dronning Maud Land) Cloud height Precipitation x Cloud base temperature Phase 2 : use obtained data for regional model validation
6
Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenland/Antarctic Meso => large scale
7
Model validation Antarctica: Greenland:Arctic Ocean: ARM network SHEBA (1997/98) MPACE (2004) ASTAR (2004/7) ASCOS (2008) Summit (ARM) (spring 2010+) South Pole Pr Elis (new!) Dome C DDU Modèle Atmosphérique Régional (MAR) Modèle de Laboratoire de Météorologie Dynamique with Zoom capabilities over the polar regions (LMDZ) + CloudSat and CALIPSO => aerosols-clouds-precipitation
8
MAR validation : energy budget and temperature Gallée and Gorodetskaya, Clim Dyn 2008 Temperature over Dome C, Antarctica
9
potential for model validation : clouds and precipitation Princess Elisabeth station snowfall events (g/kg of snow particles) accumulation, cm Regional model simulations: Snow fall event shown by radar reflectivity Observations at Princess Elisabeth: Feb 1, 2010
10
Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenld/Antarctic Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change Meso => large scale
11
I. Improve cloud scheme in regional model: GISS-Er HadCM3 CCSM3 ocean land LMDZ (IPSL) Cloud ice fraction Cloud temperature Cloud schemes improvement II. Improve cloud phase representation in GCM (LMDZ) MAR: - tropospheric clouds are too thin - ice particle size too large - improve treatment of ice and snow size spectra
12
Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenland/Antarctic Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change Meso => large scale
13
Application: understanding cloud-ice feedbacks planet warming precipitation surface sens and latent heat fluxes atm temperature and humidity large-scale advection MELT aerosols ? cloud properties + + + radiative fluxes ICE MASS BALANCE - ? +/-
14
LGGE : “Climat moderne et observations glaciologiques” Climate modeling: LMD (LMDZ/IPSL) S. Bony, J.-L. Dufresne MeteoFrance (CNRM) Cloud modeling: LaMP MeteoFrance in Europe : Polar climate modling: Liege U, KU-Leuven, IMAU-Netherlands Sea ice modeling: Louvain-la-Neuve USA/Canada : Arctic cloud obs and modeling (Rutgers, NCAR,U Montreal) Arctic climate/sea ice (McGill, U Wash) Collaborations Cloud observations: LaMP NOAA KU-Leuven IFAC (Italy) Observational programs: GLACIOCLIM, CESOA (LGGE) ENEA programs (Italy) French/European projects: Ice2Sea, COMBINE, HYDRANT, Arctic Observatory International projects: NOAA’s Arctic Atmospheric Observatory (T. Uttal et al) ICECAP (V. Walden et al/Greenland)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.