Presentation is loading. Please wait.

Presentation is loading. Please wait.

Concours CNRS CR2, Section 19. Meudon, 17 Mars 2010 Irina Gorodetskaya Candidate for Laboratoire de Glaciologie et Géophysique de l’Environnement, (UMR.

Similar presentations


Presentation on theme: "Concours CNRS CR2, Section 19. Meudon, 17 Mars 2010 Irina Gorodetskaya Candidate for Laboratoire de Glaciologie et Géophysique de l’Environnement, (UMR."— Presentation transcript:

1 Concours CNRS CR2, Section 19. Meudon, 17 Mars 2010 Irina Gorodetskaya Candidate for Laboratoire de Glaciologie et Géophysique de l’Environnement, (UMR 5183 CNRS, Université Joseph Fourier-Grenoble) Cryosphere Clouds Understanding Clouds and Their Effects on Radiative Budget and Precipitation in the Present and Future Polar Climate using model simulations and observations

2 Motivation CLOUDS ? Arctic sea ice decline! 2007 x x 2008 ? Credit: NSIDC Arctic September sea ice extent 2009 x Relative annual mean precipitation change on the Antarctic ice sheet during the 21st century Krinner et al. 2007 Antarctic precipitation increase?

3 The role of clouds in the Arctic sea ice decline Gorodetskaya and Tremblay 2008, AGU monograph “Arctic sea ice decline” PhD at Lamont-Doherty Earth Observatory, Columbia University 2002-2007 : My Background CCSM3 A1B

4 Model simulations of present and future Antarctic climate and sfc mass balance My Background Postdoctorat at Laboratoire de Glaciologie et Géophysique de l’Environnement November 2007 - present: supervisors: H. Gallée and G. Krinner Surface air temperature difference between the two models: MAR nested in LMDZ Gorodetskaya, Gallée, Krinner, in prep Large-scale model (LMDZ) Mesoscale model (MAR) 1981-1989 annual mean

5 Postdoctorat at K. U. Leuven, Belgium August 2009 - present: Clouds and hydrologic cycle of Antarctica supervisor: N. van Lipzig My Background AWS Phase 1 : meteorological and cloud measurements at the new Belgian Antarctic Station (Dronning Maud Land) Cloud height Precipitation x Cloud base temperature Phase 2 : use obtained data for regional model validation

6 Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenland/Antarctic Meso => large scale

7 Model validation Antarctica: Greenland:Arctic Ocean: ARM network SHEBA (1997/98) MPACE (2004) ASTAR (2004/7) ASCOS (2008) Summit (ARM) (spring 2010+) South Pole Pr Elis (new!) Dome C DDU Modèle Atmosphérique Régional (MAR) Modèle de Laboratoire de Météorologie Dynamique with Zoom capabilities over the polar regions (LMDZ) + CloudSat and CALIPSO => aerosols-clouds-precipitation

8 MAR validation : energy budget and temperature Gallée and Gorodetskaya, Clim Dyn 2008 Temperature over Dome C, Antarctica

9 potential for model validation : clouds and precipitation Princess Elisabeth station snowfall events (g/kg of snow particles) accumulation, cm Regional model simulations: Snow fall event shown by radar reflectivity Observations at Princess Elisabeth: Feb 1, 2010

10 Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenld/Antarctic Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change Meso => large scale

11 I. Improve cloud scheme in regional model: GISS-Er HadCM3 CCSM3 ocean land LMDZ (IPSL) Cloud ice fraction Cloud temperature Cloud schemes improvement II. Improve cloud phase representation in GCM (LMDZ) MAR: - tropospheric clouds are too thin - ice particle size too large - improve treatment of ice and snow size spectra

12 Research project : Clouds and Radiative Feedbacks in Present and Future Polar Climate Data and Models : Model validation meso-scale (MAR) large-scale (LMDZ) ground-based and satellite data Arctic ocean Greenland/Antarctic Cloud scheme improvement Model simulations and data analysis Understanding climate change in polar regions Arctic sea ice loss Greenland melt Antarctic precipitation change Meso => large scale

13 Application: understanding cloud-ice feedbacks planet warming precipitation surface sens and latent heat fluxes atm temperature and humidity large-scale advection MELT aerosols ? cloud properties + + + radiative fluxes ICE MASS BALANCE - ? +/-

14 LGGE : “Climat moderne et observations glaciologiques” Climate modeling: LMD (LMDZ/IPSL) S. Bony, J.-L. Dufresne MeteoFrance (CNRM) Cloud modeling: LaMP MeteoFrance in Europe : Polar climate modling: Liege U, KU-Leuven, IMAU-Netherlands Sea ice modeling: Louvain-la-Neuve USA/Canada : Arctic cloud obs and modeling (Rutgers, NCAR,U Montreal) Arctic climate/sea ice (McGill, U Wash) Collaborations Cloud observations: LaMP NOAA KU-Leuven IFAC (Italy) Observational programs: GLACIOCLIM, CESOA (LGGE) ENEA programs (Italy) French/European projects: Ice2Sea, COMBINE, HYDRANT, Arctic Observatory International projects: NOAA’s Arctic Atmospheric Observatory (T. Uttal et al) ICECAP (V. Walden et al/Greenland)


Download ppt "Concours CNRS CR2, Section 19. Meudon, 17 Mars 2010 Irina Gorodetskaya Candidate for Laboratoire de Glaciologie et Géophysique de l’Environnement, (UMR."

Similar presentations


Ads by Google