Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rare B Decays at Mousumi Datta University of Wisconsin, Madison On behalf of the BaBar Collaboration XII International Workshop on Deep Inelastic Scattering.

Similar presentations


Presentation on theme: "Rare B Decays at Mousumi Datta University of Wisconsin, Madison On behalf of the BaBar Collaboration XII International Workshop on Deep Inelastic Scattering."— Presentation transcript:

1 Rare B Decays at Mousumi Datta University of Wisconsin, Madison On behalf of the BaBar Collaboration XII International Workshop on Deep Inelastic Scattering 14-18 April 2004

2 2 Outline   Introduction Motivation Experimental techniques   Rare hadronic B decays   Radiative and electroweak B decays   Purely leptonic B decays  Summary All results are preliminary unless referenced. DIS 2004 Mousumi Datta, University of Wisconsin-Madison

3 3 DIS 2004 Mousumi Datta, University of Wisconsin-Madison SM and Rare B Decays .  Good agreement between Standard Model (SM) and the experimental results up to now.   To be sensitive to possible new physics (NP) and to test SM  consider decays with small SM rates.  Look at :  Processes dominated by penguin loops  CKM suppressed decays  Purely leptonic decays Rare B Decays

4 4 SM and Rare B Decays (cont’)  New physics particles in loops might show up in: Different rates, kinematic distributuios than SM only Different CP violation than SM only DIS 2004 Mousumi Datta, University of Wisconsin-Madison Constrain the SM  Time dependent CP measurements (L. Li Gioi’s talk)  Direct (time integrated) CP measurement  Decay rates  Compare theoretical predictions  Constrain CKM parameters : |V td /V ts | from B  K* ,   Kinematic distributions :  K *, X s l + l -

5 5 Direct CP Asymmetry  Different decay rates for B  f and B  f  need 2 decay amplitudes with different weak phase and different strong phase: Weak phase difference Strong phase difference Penguin-dominated decays like B   K (*), K , K*  have small A CP in SM  sensitive to extra CP-violating phases due to NP DIS 2004 Mousumi Datta, University of Wisconsin-Madison

6 6 PEP-II Luminosity Performance Best Peformance PEPII peak Luminosity : 8.305x10 33 cm -2 sec -1 24 hours : 660.5 pb -1 On-peak (fb -1 ) Run 1+282 Run 1+2+3113 Run 4 data taking in progress: ~100 fb -1 by July 2004. DIS 2004 Mousumi Datta, University of Wisconsin-Madison 89.7  10 6 BB 82 fb -1 on-peak data for analysis 124.1  10 6 BB

7 7 Standard Variables in  (4S) Frame e + e -   (4S)  BB B produced almost at rest in  (4S) frame For B decay with no missing particles use beam energy to constrain mass and energy of the reconstructed B background signal background 0 for signal m B for signal  E and m ES provide uncorrelated measurement of energy and mass DIS 2004 Mousumi Datta, University of Wisconsin-Madison

8 8 Rare Hadronic B Decays  Suppressed at tree(T) level due to Cabbibo, FCNC, etc. Significant Penguin (P) contribution.  Hadronic decay modes covered in the talk Tree diagram Penguin diagram DIS 2004 Mousumi Datta, University of Wisconsin-Madison B  , K , KK B → ρρ and ρK* B   K (*) /  B   (') K (*) and  (')  /  B  (  ) (  )

9 9 B  Measure  eff from time dependent CP analysis of B 0  +  - decay Measure  eff from time dependent CP analysis of B 0  +  - decay Constrain  using isospin connection for decays             BF(B 0  +  - )= (4.7  0.6  0.2)  10 -6 (PRL, hep-ex/0207055) B 0  +  - @ 82 fb -1 (PRL, hep-ex/0303028) (PRL, hep-ex/0303028) DIS 2004 Mousumi Datta, University of Wisconsin-Madison d u u Tree CKM suppressed Penguin diagram B  +  - Color suppressed tree for B  0  0 B +  +  0 @ 82 fb -1

10 10 B 0  0  0 @ 113 fb -1 BF(B 0  0  0 ) = (2.1 ± 0.6 ± 0.3)  10 -6 Observed events = 46 ± 13 ± 3 (PRL,hep-ex/0308012) SM prediction BF ~ (0.3-1.1)  10 -6 4.2  With WA Br(B   0  0 ) |  -  eff |<48 o at 90% c.l. B  (Cont’) Observation of significant excess of  0  0 events Bound on penguin pollution Grossman Quinn bound PRD 58 (1998) 017504

11 11 Summary of BF (10 -6 ) for K ,  and KK Mode BF (10 -6 ) A cp L (fb -1 ) K+ -K+ - 17.9  0.9  0.7-0.107  0.041  0.013 82, 113 K0 +K0 + 22.3  1.7  1.1-0.05  0.08  0.01 82 K+ 0K+ 0 -0.09  0.09  0.01 82 K0 0K0 0 11.4  1.7  0.80.03  0.36  0.11 82 + -+ - 4.7  0.6  0.2 -82 + 0+ 0 0 00 0 2.1  0.6  0.3 -113 K + K - < 0.6 @ 90% CL -82 K + K 0 < 2.5 @ 90% CL -82 K 0 < 1.8 @ 90% CL -82 KK decays more sensitive to rescattering : No sign of rescattering (FSI) yet A cp consistant with zero Ratio of BF for  and K  sensitive to angle  DIS 2004 Mousumi Datta, University of Wisconsin-Madison Time dep. CP analysis of K s  0 using 113 fb -1 Measure sin2  PRL

12 12  (  +  - )/  (K +  - ) 0.26 ± 0.04 ± 0.02  (K +  - )/  (K 0  + ) 0.87 ± 0.08 ± 0.05 2  (K +  0 )/  (K 0  + ) 1.15 ± 0.14 ± 0.12  (K +  - )/2  (K 0  0 ) 0.79 ± 0.12 ± 0.06 Isospin ratios << 1/ 2  if tree only  Significant Penguin contribution  Isospin symmetry holds well for penguin dominated modes (  EW penguin small)  Need more statistics for further constraint Isospin sum rule (Gronau et. al. (2003), hep-ph/0307095) (Lipkin) BaBar: 1.21  0.13 Belle(LP03): 1.25  0.15  New Physics ? K  and  < 4% *Ratios calculated by speaker, assuming errors are uncorrelated DIS 2004 Mousumi Datta, University of Wisconsin-Madison

13 13 B → ρρ, ρK* and  K (*) /  B  VV: Longitudinal polarization ( f L ≡  L /  ) Expect: f L ~ 1 – O(M 2 V /M 2 B )  Time dependent CP analysis: Sin(2  )  K 0 and Sin(2  eff ) from   Search for direct CP violation. DIS 2004 Mousumi Datta, University of Wisconsin-Madison

14 14 B 0   +  - N S = 224 ± 29 B → ρρ and ρK * Mode BF (10 -6 ) Polarization (  L /  ) A CP B 0  +  - 30  4  5 - B+→ρ+ρ0B+→ρ+ρ0B+→ρ+ρ0B+→ρ+ρ0 -0.19  0.23  0.03 B0→ρ0ρ0B0→ρ0ρ0B0→ρ0ρ0B0→ρ0ρ0 <2.1 @90%CL -- B + →ρ 0 K* + |  -  Eff | < 13 o (  ) at 68% CL Grossman Quinn bound PRD 58 (1998) 017504 100% Longitudinal Polarization  CP even DIS 2004 Mousumi Datta, University of Wisconsin-Madison L=82 fb -1 PRL Time dep. CP measurement for  +  - also updated with 113 fb -1. (preliminary)

15 15 B   K (*) /  ModeBF (10 -6 )A CP Polarisation  K 0 --  K + 0.04  0.09  0.01 -  + + <0.41 @ 90% CL--  K* 0 11.2  1.3  0.80.04  0.12  0.020.65  0.07  0.02  K* + 0.16  0.17  0.030.46  0.12  0.03  K (*)  Expect similar BF all  K (*) modes  BF(  + )<4  10 -7 [90% CL] (No indication for rescattering – as KK)  Polarisation small hep-ex/0309025 hep-ex/0307026 L=82 fb -1 DIS 2004 Mousumi Datta, University of Wisconsin-Madison Small f L still not understood – may be related to penguins [Bauer, Pirjol, Rothstein, Stewart, hep-ph/0401188; Kagan] B  K *0 full angular analysis with 113 fb -1 f L = 0.52  0.07  0.02 (preliminary)

16 16  (')  /   (') K (*) and  (')  /  Decays  ()  and  + are dominated by tree diagram as penguin diagrams are suppressed.  K,  K* enhanced  K,  K* suppressed Interference  Flavour singlet diagram: Also important for  K* CKM suppressed H Lipkin Phys Lett B254 (1991) 247 Similarly for K 0, K *0 except no external tree. DIS 2004 Mousumi Datta, University of Wisconsin-Madison

17 17 ( ,  )(K, ,K*, ,  0 ),  0,  0 PRL 91, 161801 2003, PRL 92,061801 2004 Submitted to PRD hep-ex/0403025 L=82 fb -1  K BF 3- 10 times larger than initially expected values. In agreement with recent NLO QCD prediction (Beneke and Neubert, (2003) Nucl. Phys. B 651, 225). Large asymmetry predicted for  +, small for  + Chiang, Gronau, Luo, Rosner and Suprun [hep-ph/0307395] DIS 2004 Mousumi Datta, University of Wisconsin-Madison  K* measurement not precise enough to determine the presence of flavor singlet component.

18 18 CLEO Isoscalar ( , , ,  )( , , ,  ) 8 of 10 combinations , , , , , ,  ,  (not ,  ) L=82 fb -1 Submitted to PRL DIS 2004 Mousumi Datta, University of Wisconsin-Madison

19 19 Correlated bounds on CP asymmetries in B 0  K s   Gronau, Rosner & Zupan, hep- ph/0403287, April 2004] Predictions for  K s Time Dependent asymmetry S,C HFAG average DIS 2004 Mousumi Datta, University of Wisconsin-Madison From  0  0,  0 ,  0  ’, ,  ’  ’,  ’ From  0  0, K + K -,  0 ,  ’ Previous bounds Similar bounds from [Grossman-Ligeti-Nir-Quinn, PRD 68, 015004 (2003).]

20 20 Rare decays aren’t so “rare” DIS 2004 Mousumi Datta, University of Wisconsin-Madison

21 21 B  K*  and  /  B   /   : (PRL, hep-ex/0306038) B  K*  (Preliminary) Iso-spin asym.  0- = = 0.051  0.044(stat)  0.023(sys)  0.024(R +/0 ) SM prediction: (+5 to +10)% Time dep. CP analysis B 0  K *0 (K s  0 )  with 113 fb -1 Prediction Measurement BF(B 0  K *0 (K +  -,K 0 s  0 )  ) 7.5  3.0 3.92  0.20  0.24 BF(B +  K *+ (K +  0,K 0 s  + )  ) 7.5  3.0 3.87  0.28  0.26 A CP (K * (K +  -, K +  0, K 0 s  + )  < 1% -0.013  0.036  0.010 BF(B 0  0 (  +  - )  ) 0.5 – 0.75 < 1.2 BF(B +  + (  +  0 )  ) 0.8 – 1.5 < 2.1 BF(B 0  (  +  -  0 )  ) 0.5 – 0.75 < 1.0 10 -5 10 -6 @ 90% CL L=82 fb -1 L=78 fb -1 DIS 2004 Mousumi Datta, University of Wisconsin-Madison

22 22 L=82 fb -1 Semi-inclusive B  X s  A cp = 0.025  0.05  0.015 (for total sample) A cp = -0.04  0.10  0.02 (for high purity sample) Submitted to PRL X s fully reconstructed in 12 exclusive self-tagging modes DIS 2004 Mousumi Datta, University of Wisconsin-Madison

23 23 B  K (*) l + l - SM Prediction (10 -6 ) BF(B → Kl + l - ) = 0.35  0.12 BF(B → K*e + e - ) = 1.58  0.49 BF(B  K*  +  - ) = 1.19  0.39 Ali et al. (hep-ph/0112300, 2001) B  K*l + l - B  Kl + l - L=113.1 fb -1 3.3  >8  PRL, hep-ex/0308042 PRL, hep-ex/0308042 DIS 2004 Mousumi Datta, University of Wisconsin-Madison

24 24 L=82 fb -1 Semi-inclusive B  X s l + l -  Less theoretical uncertainty  Observables: BF, m(l + l - ), m(X s ), A FB (m(l + l - )) X s reconstructed in 10 modes: uncounted states ~25% of the total rate In signal region m(l + l - )> 0.2 GeV/c 2 41  10(stat)  2(syst) events observed Prediction for m(l + l - )>0.2 GeV/c 2 : (4.2  0.7)  10 -6 ( Ali, hep-ph/0210183, 2002) DIS 2004 Mousumi Datta, University of Wisconsin-Madison Xse+e-Xse+e- Xs+-Xs+- Xsl+l-Xsl+l- XseXse

25 25 B  K B  K   FCNC transition   2 ’s in the final state  Reconstruct one B & look for signal in the recoil side B -  K -  simulation Data 80.7 fb -1 BF < 1.05 x10 -4 @ 90% CL Hadronic B Sample Semileptonic B Sample Combined limit @ 90% CL < 7.0 x 10 -5 50.7 fb -1 BF < 9.4 x10 -5 @ 90% CL SM Expectation: ~ 4  10 -6 DIS 2004 Mousumi Datta, University of Wisconsin-Madison

26 26 B +  + at 81.4 fb -1 B +  + simulation Data BF(B +  + ) < 6.6  10 -6 @ 90% CL (PRL) Purely leptonic decay are helicity suppressed in SM Purely leptonic decay are helicity suppressed in SM B +  l + : SM expectation: BF(B +  + ) ~ 4  10 -7 BF(B +  + ) ~ 9  10 -5 Provide measurement of f B |V ub | Sensitive to charged Higgs, leptoquarks. B +  l + B +  l + L=81.4 fb -1 DIS 2004 Mousumi Datta, University of Wisconsin-Madison

27 27 B  Multiple ’s in the final state  Reconstruct one B & look for signal in the recoil side. Combined limit BF < 4.1 x 10 -4 at 90% CL Semileptonic B Sample Includes  e,   total ~ 0.07 % BF < 4.9 x10 -4 @ 90% CL L=81.9 fb -1 Hadronic B Sample Includes  e, , ,  0, 3   total ~ 0.028 % BF < 7.7 x10 -4 @ 90% CL Existing tightest limit (L3) BF < 5.7 x 10 -4 at 90% CL BF < 5.7 x 10 -4 at 90% CL E extra (GeV) Semileptonic Sample DIS 2004 Mousumi Datta, University of Wisconsin-Madison

28 28Summary   Large amount B mesons produced at B-factories First observation of many rare decay modes More precise measurement of BFs Tighter upper limits on BFs   BaBar haven’t seen evidence of direct CP violation yet. Precise measurements of A CP in future will enable further tests of models.   No strong evidence of NP. Measurements and search for many more rare decay modes continuing   The expected increase in luminosity of the B Factories promises a continuing, rich harvest of physics DIS 2004 Mousumi Datta, University of Wisconsin-Madison Stay tuned for the summer results.

29 29 Backup Slides

30 30 PEP-II Asymmetric B-Factory at SLAC Asymmetric collider operation at  (4S) resonance (E cms =10.58 GeV) 3.1 GeV e + and 9 GeV e - B-mesons in lab have  =0.56 B B production threshold DIS 2004 Mousumi Datta, University of Wisconsin-Madison

31 31 The BaBar Detector DIRC  PID) 144 quartz bars 11000 PMs 1.5 T solenoid EMC 6580 CsI(Tl) crystals Drift Chamber 40 stereo layers Instrumented Flux Return iron / RPCs (muon / neutral hadrons) Silicon Vertex Tracker 5 layers, double sided strips e + (3.1 GeV) e - (9 GeV) SVT: 97% efficiency, 15 mm z hit resolution (inner layers, perp. tracks) SVT+DCH:  (p T )/p T = 0.13 %  p T + 0.45 % DIRC: K-  separation 4.2  @ 3.0 GeV/c  2.5  @ 4.0 GeV/c EMC:  E /E = 2.3 %  E -1/4  1.9 % DIS 2004 Mousumi Datta, University of Wisconsin-Madison

32 32 Continuum Suppression B Signal u,d,s,c background Fisher Discriminant Arbitrary Units e+e+ e-e- e+e+ e-e- qq Signal B Other B B decays: isotropic Examples of topological variables using these properties:  Thrust   Energy cones Continuum (u,d,s,c): jet-like Variables are used in a Fisher or a Neural Net (NN) DIS 2004 Mousumi Datta, University of Wisconsin-Madison

33 33 BF & A CP for B  ,  K, ,  K ModeBF (10 -6 )A CP L (fb -1 ) B 0 → ρ  π  22.6  1.8  2.2-0.11  0.06  0.03 82 (PRL), 113 B 0 → ρ - K + 0.18  0.12  0.08 82 (PRL) B 0 → ρ 0 π 0 < 2.9 @ 90% CL -82 (PRL) B + → ρ + π 0 10.9  1.9  1.90.24  0.16  0.06 82 (PRL) B + → ρ 0 π + 9.5  1.1  0.9-0.19  0.11  0.02 82 (PRL) B + → ρ 0 K + <6.2 @ 90% CL -56.4 (PRL) B 0 → ω K 0 -82 (PRL) B + → ω K + 4.8  0.8  0.4-0.09  0.17  0.01 82 (PRL) B 0 → ω π 0 < 1.2 @ 90% CL -82 (PRD) B + → ω π + 5.5  0.9  0.50.03  0.16  0.01 82 (PRL) Measure  eff from time dependent CP analysis of     BF of  and  K are in good agreement with theoretical expectation. DIS 2004 Mousumi Datta, University of Wisconsin-Madison

34 34 B   K* 0 full angular analysis Direct rate asymmetries Triple-product asymmetries Fit results DIS 2004 Mousumi Datta, University of Wisconsin-Madison L=113 fb -1 Preliminary

35 35 B   K* 0 No evidence for Direct CP violation B   f L =0.52  0.07  0.02 Weak evidence for FSI (2.3  Triple-product asym. (1.7  (would be evidence for New Physics Datta&London hep-ph/0303159 ) DIS 2004 Mousumi Datta, University of Wisconsin-Madison

36 36 B A B AR 94±14(stat)±6(syst) evts L=111fb -1 Total Continuum All bgk. B A B AR Total Continuum All bgk. B 0  f 0 (980)K s, f 0  +  - First Observation Structure of this scalar meson obscure. Recent studies favor usual qq states [hep-ph/0011191(2000)] Decay can be dominated by b  sss penguin ss sizeable b  uus tree doubly Cabbibo suppressed compared to leading penguin Time dependent CP measurement (see L. Ligioi’s talk) BF(B 0  f 0 (980)(  +  - )K 0 ) = (6.0  0.9  0.4  1.2)  10 -6 DIS 2004 Mousumi Datta, University of Wisconsin-Madison L=111 fb -1 Preliminary

37 37 B  a 0 (980)(K, ,K S ) Dominant tree diagram G-parity suppressed Dominant penguin a0Ka0K a0a0  a 0 + negligible compared with a 0 - (G-parity)  “self-tagging”  a 0 K expected to be small (Wilson-coefficient cancellation) Chernyak, PLB 509, 273 (2001).

38 38 B  a 0 (980)(K, ,K S ) PRELIMINARY  Unbinned ML fits (89M BB events); a 0 , ,3   Only previous search from BABAR (20 fb -1, LepPho 2001) Found 3.7  evidence for B 0  a 0 (980) -  + Found 3.7  evidence for B 0  a 0 (980) -  + Do not confirm that with substantially improved sensitivity Do not confirm that with substantially improved sensitivity Studies indicate the previous result was a statistical fluctuationStudies indicate the previous result was a statistical fluctuation B is B (B  a 0 X)  B (a 0  L=82 fb -1

39 39 B  K S     branching fraction B(B  K 0  +  - ) = (43.8 ± 3.8 ± 3.4)  10 -6 Comparable to, but more precise than, previous results Comparable to, but more precise than, previous results CLEO (50 ± 10 ± 7)  10 -6CLEO (50 ± 10 ± 7)  10 -6 Belle (45.4 ± 5.2 ± 5.9)  10 -6Belle (45.4 ± 5.2 ± 5.9)  10 -6  Measurement of the branching fraction integrated over the Dalitz plot  Careful corrections for efficiency across Dalitz plot  Consistency check from B 0  D -  + with D -  K S  - B 0  D -  + with D -  K S  - L=82 fb -1

40 40 B 0 →K + K - K S and B + →K + K S K S  3 body decay B 0 →K + K - K S (excluding B 0 →  K 0 ) Time dependent CP analysis: Sin(2  )  Determine CP-even fraction using Branching fraction measurements Branching fraction measurements Isospin symmetry [Belle Collaboration, Isospin symmetry [Belle Collaboration, Phys. Rev D69, 012001 (2004)]: B 0 →K + K - K S 201±16 events L=111 fb -1 B + →K + K S K S 122±14 events B A B AR DIS 2004 Mousumi Datta, University of Wisconsin-Madison BF(B 0 → K + K - K 0 )= (23.8±2.0±1.6)×10 -6 BF(B + → K + K S K S )=(10.7±1.2±1.0)×10 -6 ƒ even =0.98±0.15±0.04 Acp(B +  K + K s K s ) = -0.042  0.114(stat)  0.02(syst) 0.114(stat)  0.02(syst) L=113 fb -1

41 41 B + →K + K - K + B + →K +  -  + B+   +  -  + BF (10 -6 ) A CP + - ++ - ++ - ++ - + 10.9  3.3  1.6 -0.39  0.33  0.12 K+ - +K+ - +K+ - +K+ - + 59.1  3.8  3.2 0.01  0.07  0.03 K+ K- K+K+ K- K+K+ K- K+K+ K- K+ 29.6  2.1  1.6 0.02  0.07  0.03 K+ K- +K+ K- +K+ K- +K+ K- + < 6.3 @ 90% CL N/A + K- ++ K- ++ K- ++ K- + < 1.8 @ 90% CL N/A K+ - K+K+ - K+K+ - K+K+ - K+ < 1.3 @ 90% CL N/A Charmless B +  h + h - h + (h=K,  ) Search for direct CPV. Measure  through the interference between various charmless decays and  c0 resonance (Blanco et al, Phys.Rev.Lett.86,2720(2001)) Measurement of B +  +  +  - can be used to reduce uncertainty in  measurement (Snyder and Quinn, Phys. Rev. D48, 2139(1993)) L=81.8 fb -1 PRL (hep-ex/0304006) DIS 2004 Mousumi Datta, University of Wisconsin-Madison

42 42 Exclusive Branching Fractions of B +  K +  -  + BF (10 -6 ) B +  K *0 (892)  +, K *0  K +  - B +  f 0 (980)K +, f 0  +  - B +  c0 K +,  c0  +  - 1.5  0.4  0.1 B +  D 0  +, D 0  K +  - 184.6  3.2  9.7 B +  higher K *0  +, K *0  K +  - B +   0 (770)K +,  0  +  - <6.2 at 90% CL B +  K +  -  + (non resonant) <17 at 90% CL B +  A higher f @ K +, f  +  - <12 at 90% CL L=56.4 fb -1j  c0 f 0 (980) 00 higher K *0 D0D0 K *0 (892) (veto) J/   (2S)  Search for direct CPV  Measure  through the interference between various charmless decays and  c0 resonance Submitted to Phys.Rev.Lett. (hep-ex/0308065) Dalitz plot divided into 8 regions K *0 (892)  + BF result significantly higher than prediction from many factorization models. Limit on non-resonant component   dependent interference will be hard to measure DIS 2004 Mousumi Datta, University of Wisconsin-Madison

43 43 Inclusive b  s  L=54.6 fb -1 Signal region Onpeak data Background expectation Signal Region 2.1 < E *  < 2.7 GeV DIS 2004 Mousumi Datta, University of Wisconsin-Madison

44 44 B0l+l-B0l+l-B0l+l-B0l+l-  FCNC process  B 0  l + l - : SM Expectation: BF(B 0  e + e - ) : 1.9  10 -15 BF(B 0  +  - ) : 8.0  10 -11 In various SUSY models BF enhanced, B 0  e    allowed. B0e+e-B0e+e-B0e+e-B0e+e- B 0  +  - B0eB0eB0eB0e BF(B 0  e    )<2.1  10 -7 BF(B 0  e + e - ) < 3.3  10 -7 Upper limits at 90% CL: BF(B 0  +  - )< 2.0  10 -7 L=54.4 fb -1 DIS 2004 Mousumi Datta, University of Wisconsin-Madison

45 45   Fully reconstructed B Meson in Hadronic decays: D (*) (n)  Semileptonic decays: D (*) l (statistically independent)  Look for process of interest in the Recoil Pro: Background suppression! Con: Statistics limited ‘other’ B Brecoil Breco D*  Y(4S) l For search of rare decays like B  K, B .... Recoil Analysis sideband peak Hadronic B  Sample N B  B  = (1.67  0.09)  10 5 @ 81.9 fb - 1 DIS 2004 Mousumi Datta, University of Wisconsin-Madison


Download ppt "Rare B Decays at Mousumi Datta University of Wisconsin, Madison On behalf of the BaBar Collaboration XII International Workshop on Deep Inelastic Scattering."

Similar presentations


Ads by Google