Download presentation
Presentation is loading. Please wait.
Published byAllyson Walker Modified over 9 years ago
1
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
2
©rlc L08-15Feb20112 Second Assignment Submit a signed copy of the document posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf
3
©rlc L08-15Feb20113 Test 1 – Tuesday 22Feb11 11 AM Room 129 ERB Covering Lectures 1 through 9 Open book - 1 legal text or ref., only. You may write notes in your book. Calculator allowed A cover sheet will be included with full instructions. For examples see http://www.uta.edu/ronc/5340/tests/.
4
©rlc L08-15Feb20114 Diffused or Implanted IC Resistor (Fig 2.45 1 )
5
©rlc L08-15Feb20115 An IC Resistor with L = 8W (M&K) 1
6
©rlc L08-15Feb20116 Typical IC doping profile (M&K Fig. 2.44 1 )
7
©rlc L08-15Feb20117 Mobilities**
8
©rlc L08-15Feb20118 IC Resistor Conductance
9
©rlc L08-15Feb20119 An IC Resistor with N s = 8, R = 8R s (M&K) 1
10
©rlc L08-15Feb201110 The effect of lateral diffusion (M&K 1 )
11
©rlc L08-15Feb201111 A serpentine pattern IC Resistor (M&K 1 ) R = N S R S + 0.65 N C R S note: R C = 0.65 R S
12
©rlc L08-15Feb201112 The equilibrium carrier concentration ahd the Fermi energy are related as The potential = (E f -E fi )/q If not in equilibrium, a quasi-Fermi level (imref) is used Fermi Energy
13
©rlc L08-15Feb201113 Electron quasi-Fermi Energy (n = n o + n)
14
©rlc L08-15Feb201114 Hole quasi-Fermi Energy (p = p o + p)
15
©rlc L08-15Feb201115 E x -field when E f - E fi not constant Since = (E f - E fi )/q = V t ln(n o /n i ) When E f - E fi = is position dependent, E x = -d /dx = -[d(E f -E fi )/dx] = - V t d[ln(n o /n i )]/dx If non-equilibrium n = (E fn -E fi )/q = V t ln(n/n i ), etc E xn = -[d n /dx] = -V t d[ln(n/n i )]/dx
16
©rlc L08-15Feb201116 Si and Al and model (approx. to scale) q m,Al ~ 4.1 eV EoEo E Fm E Fp E Fn EoEo EcEc EvEv E Fi q s,n q si ~ 4.05 eV EoEo EcEc EvEv E Fi q s,p metaln-type s/cp-type s/c q si ~ 4.05 eV
17
©rlc L08-15Feb201117 Making contact be- tween metal & s/c Equate the E F in the metal and s/c materials far from the junction E o (the free level), must be continuous across the jctn. N.B.: q = 4.05 eV (Si), and q = q E c - E F EoEo EcEc EFEF E Fi EvEv q (electron affinity) qFqF qq (work function)
18
©rlc L08-15Feb201118 Equilibrium Boundary Conditions w/ contact No discontinuity in the free level, E o at the metal/semiconductor interface. E F,metal = E F,semiconductor to bring the electron populations in the metal and semiconductor to thermal equilibrium. E o - E C = q semiconductor in all of the s/c. E o - E F,metal = q metal throughout metal.
19
©rlc L08-15Feb201119 Ideal metal to n-type barrier diode ( m > s,V a =0) E Fn EoEo EcEc EvEv E Fi q s,n qsqs n-type s/c qmqm E Fm metal q Bn qiqi q’nq’n No disc in E o E x =0 in metal ==> E o flat Bn = m - s = elec mtl to s/c barr i = Bn - n = m - s elect s/c to mtl barr Depl reg
20
©rlc L08-15Feb201120 Metal to n-type non-rect cont ( m < s ) E Fn EoEo EcEc EvEv E Fi q s,n qsqs n-type s/c qmqm E Fm metal q B,n qnqn No disc in E o E x =0 in metal ==> E o flat B,n = m - s = elec mtl to s/c barr i = Bn - n < 0 Accumulation region Acc reg qiqi
21
©rlc L08-15Feb201121 Ideal metal to p-type barrier diode ( m < s ) No disc in E o E x =0 in metal ==> E o flat Bn = m - s = elec mtl to s/c barr. Bp = m - ( s + E g )= hole m to s barr. i = m - s,p = hole s/c to mtl barr. E Fp EoEo EcEc EvEv E Fi q s,p qsqs p-type s/c qmqm E Fm metal q Bn qiqi q p <0 Depl reg q Bp qiqi
22
©rlc L08-15Feb201122 Metal to p-type non-rect cont ( m > s ) No disc in E o E x =0 in metal ==> E o flat B,n = m - s = elec mtl to s/c barr Bp = m - ( s + E g ) = hole m to s i = m - s,n = s/c to mtl barr. E Fi EoEo EcEc EvEv E fP q s,n qsqs n-type s/c qmqm E Fm metal q Bn q( i ) qpqp Accum reg q Bp qiqi
23
©rlc L08-15Feb201123 Metal/semiconductor system types n-type semiconductor Schottky diode - blocking for m > s contact - conducting for m < s p-type semiconductor contact - conducting for m > s Schottky diode - blocking for m < s
24
©rlc L08-15Feb201124 References 1 and M&K Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the model. 2 Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981. 3 and ** Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997. Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.