Download presentation
Presentation is loading. Please wait.
Published byFerdinand Norman Modified over 9 years ago
1
NERC DataGrid NERC DataGrid Vocabulary Server Use Cases Vocabulary Workshop, RAL, February 25, 2009
2
NERC DataGrid Use Cases Metadata population with verifiable content Dynamic drop-down lists Semantic cross-walk Smart discovery Vocabulary Server usage models
3
NERC DataGrid Metadata Population Use Case SeaDataNet is an EU project building a distributed data system across 30-40 European and Mediterranean data centres Semantic infrastructure provided by NDG Vocabulary Server SeaSearch was a precursor project federating metadata across a slightly smaller network SeaSearch was plagued by local vocabulary maintenance allowing illegal values into documents SeaDataNet adopted two strategies to address this
4
NERC DataGrid Metadata Population Use Case Strategy 1: constraint through tooling Provide a metadata editor that Allows manual entry of XML metadata records Exports a simple RDBMS schema into XML Link this up to the Vocabulary Server API to Populate drop-down lists Verify fields populated from vocabularies as they are output SeaDataNet Mikado tool does this
5
NERC DataGrid Metadata Population Use Case Strategy 2: constraint through validation Problem is not everybody uses the tools SeaDataNet metadata documents include Schematron code to validate field content Schematron maintained by software polling Vocabulary Server API Records validated at source using Schematron-aware tool (e.g. Oxygen 8 or later) or on-line validation service
6
NERC DataGrid Dynamic Drop-Down List Use Case SeaDataNet marks up data using BODC Parameter Usage Vocabulary (21000 terms) Navigation of something this size is a potential issue Addressed by building three layers of increasingly broad terms over the top Layers linked together using SKOS mappings
7
NERC DataGrid Dynamic Drop-Down List Use Case Search client required to exploit this An obvious design for this is a series of drop-down lists working down the hierarchy These need to be dynamically populated to keep up to date with the master vocabulary versions
8
NERC DataGrid Dynamic Drop-Down List Use Case The following URL gives all terms from the top level hierarchy: http://vocab.ndg.nerc.ac.uk/list/P081/cur rent http://vocab.ndg.nerc.ac.uk/list/P081/cur rent This may be used to set up a list of hot- linked labels pointing to Vocabulary Server concept URLs such as: http://vocab.ndg.nerc.ac.uk/term/P081/3/ DS02 http://vocab.ndg.nerc.ac.uk/term/P081/3/ DS02 Represents the concept ‘chemical oceanography’ When selected by the user a Vocabulary Server call is issues and…..
9
NERC DataGrid Dynamic Drop-Down List Use Case …we get a SKOS document thus - SDN:P081:3:DS02 Chemical oceanography The chemical oceanographic science domain 2009-02-10T10:30:20.052+0000
10
NERC DataGrid Dynamic Drop-Down List Use Case This delivers a set of URIs from the next level down in the hierarchy Again, these may be displayed as hot- linked labels and again the user selects one to drill down into the next layer of the hierarchy through another VS call Maris BV in the Netherlands have linked this to Ajax to produce a client
11
NERC DataGrid Semantic Crosswalk Use Case BODC wishes to produce a GCMD DIF document from an EDMED V1.2 document The “parameter” sections of the two documents are populated using different vocabularies (BODC PDV and GCMD Science Keywords) This situation was usually addressed by having no parameter section in the output document. We can now do better…
12
NERC DataGrid Semantic Crosswalk Use Case A list of BODC PDV terms as parameter URNs is obtained from the EDMED document, for example: SDN:P021:24:TEMP SDN:P021:24:PSAL SDN:P021:24:CPWC This may then translated into a list of URLs http://vocab.ndg.nerc.ac.uk/term/24/TEMP http://vocab.ndg.nerc.ac.uk/term/24/PSAL http://vocab.ndg.nerc.ac.uk/term/24/CPWC
13
NERC DataGrid Semantic Crosswalk Use Case This list may be rolled into an HTTP get request thus: http://vocab.ndg.nerc.ac.uk/axis2/services/vocab/getRelatedReco rdByTerm?subjectTerm=http://vocab.ndg.nerc.ac.uk/term/P021/c urrent/TEMP&subjectTerm=http://vocab.ndg.nerc.ac.uk/term/P02 1/current/PSAL&subjectTerm=http://vocab.ndg.nerc.ac.uk/term/P 021/current/CPWC&objectList=http://vocab.ndg.nerc.ac.uk/list/P0 41/current&predicate=255&inferences=true An XML document is returned containing the GCMD Science Keywords that map to the three BODC terms as both text strings and URLs The document may be reformatted using XSLT or XQuery to generate the “parameters” section for the DIF
14
NERC DataGrid Smart Discovery Use Case Ability to find datasets tagged ‘rainfall’ using the search term ‘precipitation’ Also includes so-called ‘faceted searches’ Find one ‘type of thing’ by searching for another ‘type of thing’ For example: Find datasets tagged ‘CTD’ (an instrument type) using the search term ‘salinity’ (a phenomenon) Requires semantically rich relation ‘Salinity measuredBy CTD’ System needs to understand ‘measuredBy’ (requires rules)
15
NERC DataGrid Smart Discovery Use Case Operational Smart Discovery requires: An extensively populated full-blown ontology A state of the art inference engine VS API has Smart Discovery support methods Based on SQL search on relational triple store Inference functionality would need a locally- developed inference engine Produces impressive demonstrations but not scalable to operational
16
NERC DataGrid VS Usage Models The dynamic drop-down list use case may be implemented in at least three ways 1.Client issues a VS call on each user interaction returning a relatively small XML document 2.Client uses one VS call to download the entire thesaurus into an RDF-aware tool and then interacts through a local API 3.Entire thesaurus loaded into RDF-aware tool on the server that is interrogated by the client through something like SPARQL
17
NERC DataGrid VS Usage Models Method 1 Experience shows it to work well for first three use cases Smart Discovery could potentially require hundreds of server call per query. Method 2 Requires a thick client Could be part of an installed package. Provides access to inference engines Well-suited to Smart Discovery Untested as far as we know.
18
NERC DataGrid VS Usage Models Method 3 Being developed by Marine Metadata Interoperability (MMI) project based on OWL rather than SKOS. Provides access to inference engines Well-suited to Smart Discovery support
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.