Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of Technology, NL 2 Comenius University.

Similar presentations


Presentation on theme: "Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of Technology, NL 2 Comenius University."— Presentation transcript:

1 Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of Technology, NL 2 Comenius University Bratislava, SK ISSS 2005 Pardubice, Czech Republic 12-14- September 2005

2 why? to visualize, illustrate, animate H. McNair, Basic Liquid Chromatography, http://hplc.chem.shu.edu/HPLC

3 Computer training simulation of monolithic column HPLC

4 J.C. Reijenga, MEKC animation (SDS conc change) from http://edu.chem.tue.nl/ce

5 application of computer simulations demonstrationclassroom teaching practical training in (dry) labas step towards optimization

6 original software specs #1 200 - 400 nm 0 - 65 o C 75 samples J.C. Reijenga, J. Chromatogr. A 903 (2000) 41-48

7 original software specs #2 50 - 500 mm 0.1 - 25 mm 1 - 250 µm MeOH ACN THF J.C. Reijenga, M. Hutta, J. Chromatogr. A 903 (2000) 41-48 5 - 500 mm 1 - 10 mm 1 - 25 µm MeOH ACN

8 other software extensions #1 Zorbax C 8 Lichrospher100 RP18 5µm Lichrospher100 CN 5µm Spherisorb ODS-2 5µm Aluspher100 RPSelectB 5µm TSKgel Super ODS ChromolithPerformance RP C18e

9 extensions #2, model refinement 2 parameter model Valid 20 - 50% Real experiments 3 (4) parameter model Valid 5 - 90% ChromSword

10 extensions #3, display options

11 modeling monoliths #1 pressure drop Kozeny-Carman relation: ΔP = u  L / B0 with specific permeability: B0 =  3 d p 2 / K c (1 -  ) 2 where the Kozeny "constant" K c = 180 for spherical and 300 for monoliths, why?……. a (macro) posority dependence: K c (  ) N. Vervoort, P. Gzil, G.V. Baron and G. Desmet, Anal. Chem. 2003, 75, 843-850 columnε (range) Spherical0.5 (0.4-0.6) Monolithic0.8 (0.7-0.9)

12 Dynamic pressure drop display

13 modeling monoliths #2 plate height Jennifer Houston Smith, thesis, Virginia Polytechnic Inst. & State Univ. Blacksburg, 2002 H = A + B / u + C * u (omitting the C s term) A = 2 * γ * d p (obstruction factor γ = 0.6) B = 2 * k D * D m (packing factor k D = 0.4) C = 1/96 * d p 2 / D m * (11k 2 + 6k + 1)/(k + 1) 2 (get D m from Wilke-Chang: solvent, , T and MW effects ) (for convenience: d p = particle or macro pore diameter) "a 2  m monolithic column behaves like a 4  m conventional" So for monoliths: d p is replaced with 2 d p (same γ and k D values)

14 Monolithic column 150 mm, 50% ACN, temperature 65  0°C

15 Conventional column, 150 mm, 35°C, particle diameter 1  10 µm

16 conclusions


Download ppt "Computer training simulation of monolithic column HPLC Jetse C. Reijenga 1 and Milan Hutta 2 1 Eindhoven University of Technology, NL 2 Comenius University."

Similar presentations


Ads by Google