Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hausleitner, W. (1), J. Weingrill(1), F. Moser (1), J. -D

Similar presentations


Presentation on theme: "Hausleitner, W. (1), J. Weingrill(1), F. Moser (1), J. -D"— Presentation transcript:

1 A review of the transponder calibration activities in the frame of the GAVDOS project
Hausleitner, W.(1), J. Weingrill(1), F. Moser (1), J.-D. Desjonqueres (2), N. Picot (2), S.P. Mertikas (3) (1) Austrian Academy of Sciences, Graz, Austria (2) Centre National d’Etudes Spatiales (CNES), Toulouse, France (3) Technical University of Crete, Chania, Greece

2 The GAVDOS Project GAVDOS – Establishment of a European radar altimeter calibration and sea-level monitoring site for Jason, Envisat and EURO-GLOSS Objectives Establish an absolute sea-level monitoring and altimeter calibration permanent facility on the isle of Gavdos Conduct tide-gauge measurements as well as direct altimeter transponder, Global Positioning System (GPS), Doppler Orbitography by Radio-positioning Integrated on Satellite (DORIS) and Satellite Laser Ranging (SLR) measurements for altimeter calibration Deliverables Jason absolute altimeter bias, Marine geoid, Sea level variations, local deformations / land displacements, etc. IWF/ÖAW GRAZ

3 Gavdos Calibration Work
Calibration of satellite radar altimeters a Gavdos Cal/Val facility using three different methodologies (S.P. Mertikas, et.al. 2010) Comparing sea level anomalies between the satellite and the in-situ observations BIAS = SSH_altim – SSH_tide_gauge ≈18±5 cm Relate measurements to the Mean Sea Level of CLS01_MSS BIAS = SSH_altim – MSS_CLS01 – SLA_tide_gauge Usage of a microwave transponder placed at the satellites ground-track BIAS = ALT_altim – range_altim – H_TRP IWF/ÖAW GRAZ

4 Microwave Altimeter Transponder
The principle of a microwave altimeter transponder is to receive, amplify and retransmit a satellite radar altimeter pulse. The emitted pulse is received by the altimeter on-board the satellite again with the 2-way travel-time of the pulse giving the range between the satellite and the transponder Technical specifications Minimal distortion of the signal High frequency stability Frequency: 13.7 GHz Bandwidth: 600 MHz High amplification rate Total gain: 77 dB Stable instrument delay Response delay: ns IWF/ÖAW GRAZ

5 TRP Location Deployment on Gavdos at DIAS Cross-over of Jason
3 km apart of Envisat ITRF2005 coordinates GPS campaign by S. Mertikas (Nov. 2010) Φ = 34°49‘ “ λ = 24°05‘ “ h = m IWF/ÖAW GRAZ

6 TRP Site Setup Housing Aluminium frame enveloped with fabric
Cover plate from acrylic glass Protection from wind, dust contamination, animals, etc. Electrical Power Supply 12 V car batteries recharched by solar panels (2x50 W) Modem Telecommanding Watchdog timer (daily at 0.0h) GSM/GPRS-modem for remote controlled TRP switch-on IWF/ÖAW GRAZ

7 Ocean vs. Point Target Response
IWF/ÖAW GRAZ IWF/ÖAW GRAZ

8 The Transponder Principle cont‘d
OSTM Level-2 S-IGDR Data Files 1 Hz / 20 Hz data Ku / C-band waveforms Latency: 2 days Provided by CNES (Envisat Picture) IWF/ÖAW GRAZ IWF/ÖAW GRAZ

9 ENVISAT Calibration Two years ENVISAT calibration campaign
TRP approx. 3km outside of footprint center RA-2 set to Preset Loop Output (PLO) mode RA2/MWR products analyzed RA2_science_level-1b RA2_average_waveforms RA-2 instrument bias: 39.0±3.3cm (Cristea at.al., TGRS ) IWF/ÖAW GRAZ

10 Jason Calibration Poseidon-2/3 instrument characteristics
Dual-band (C/Ku) pulse compression radar 128 waveform samples Frequency / PRF / t-res. = GHz / 2060 Hz / ns Operation modes Acquisition mode: Detects ocean returns and init. Tracking loops Tracking mode: Nominal mode for the altimeter Problem: The TRP signature is not visible in the waveform data Because: ▶ J-Tracking is more sensitive to coast/land transitions generating loss of tracking resulting to a 1.5 sec data gap (desc. passes) ▶ Gavdos is small enough to keep tracking the sea shifting the TRP outside of the altimeter ranging window (asc. passes) Calibration 2: Measures the transfer function of the internal receiver channel IWF/ÖAW GRAZ

11 Cal-2 Calibration Data Calibration-2 Mode
32 Individual Calibrations 128 bins 0.153 s Calibration-2 Mode NO absolute epoch time available! Dating of individual calibrations is known with 1s accuracy only 3.125 ns IWF/ÖAW GRAZ

12 Calibration Processing Concept
IWF/ÖAW GRAZ

13 Cal-2 Calibration Configuration
5 sec calibration waveforms ±1s ±1s 11 sec data gap IWF/ÖAW GRAZ

14 Data Screening Pass 050 Cycle 018 IWF/ÖAW GRAZ

15 Data Interpolation Densification to 20 Hz rate (cubic spline interpolation) Precise computation of point of closest approach (φ,λ) Crete 11s Gavdos φ λ IWF/ÖAW GRAZ

16 Individual Calibration Analysis
Definition/Estimation of maximum power reflection by 1)Maximum value of received energy 2)Max. val. of Gaussian fit to return power 3)Half ma. power at leading edge of Gaussian fit 4)Centroid of received energy IWF/ÖAW GRAZ

17 Individual Calibration Fitting
IWF/ÖAW GRAZ

18 Optimal Parabola Fit 32 Individual Calibrations 128 bins IWF/ÖAW GRAZ

19 Power Vertex Adjustment
Alignment of PCA of orbit vertex of fitted parabola Absolute time of PCA from orbit Absolute dating of bin #1 of individ. cal. #1 Altimeter range command Set for each calibration Provided by CNES on a pass-per-pass basis Ranging ambiguity IWF/ÖAW GRAZ

20 Geophysical Parameters
Range Wet Troposph. Source Uncorr. effect Cycle 50 Corr. Wet Troposph 0-30 cm 15 cm Dry troposphere 230 cm 229.5 cm Iono troposphere cm 1.6 cm Sea state bias 0-20 cm 8.8 cm Dry Troposph. Ionosph. Sea State Bias DOY IWF/ÖAW GRAZ

21 Range Correction   m [m] [m] DOY IWF/ÖAW GRAZ

22 Sea Surface Height IWF/ÖAW GRAZ

23 Geophysical Correcitons
IWF/ÖAW GRAZ

24 Cal-2 Ranging Budget / Residual
Corrections Effect Magnitude (m) Calibration bin range Ambiguity Altimeter delay CoM Correction r Dry troposphere Wet (water vapour) Ionosphere TRP delay (electronic) TRP delay (geometric) Station marker eccentricity Slant range correction TRP ell.height Solid earth tides Geoid Ellipsoid Orbital height Residual IWF/ÖAW GRAZ

25 Outlook Analysis of full set of Cal-2 passes
Limited number of passes available Usage of precise orbits Provided with a 60 days latency DIODE DEM coupling mode Usage of onboard digital elevation model for pre-defining the altimeter tracking window Transponder calibration with nominal tracking rate (51 ms) Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Cal. range Aux. Data 44 OK YES 45 fail 46 47 48 no CAL 49 50 51 52 53 54 55 56 57 Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Calibration Aux. Data 58 fail YES 59 no CAL 60 61 62 OK 63 64 65 66 67 68 69 70 71 72 IWF/ÖAW GRAZ

26 Figure Pool IWF/ÖAW GRAZ

27 Geophysical Corrections
Mean sea surface Solid Earth tide Geocentr. Ocean tide Pole tide height Inv. barom. height eff. HF fluctuations of SST IWF/ÖAW GRAZ

28 Orbit Slant Distance Range_ku TRP Altitude Sea Surface SSH Ellipsoid
IWF/ÖAW GRAZ

29 Date 2009/11/10 Time 14:19:34 Date Exec. CAL2 Only known to integer seconds ? Ho LSB Ho m NSPEC 3 NCAL 32


Download ppt "Hausleitner, W. (1), J. Weingrill(1), F. Moser (1), J. -D"

Similar presentations


Ads by Google