Download presentation
Published byMeredith Stafford Modified over 9 years ago
1
A review of the transponder calibration activities in the frame of the GAVDOS project
Hausleitner, W.(1), J. Weingrill(1), F. Moser (1), J.-D. Desjonqueres (2), N. Picot (2), S.P. Mertikas (3) (1) Austrian Academy of Sciences, Graz, Austria (2) Centre National d’Etudes Spatiales (CNES), Toulouse, France (3) Technical University of Crete, Chania, Greece
2
The GAVDOS Project GAVDOS – Establishment of a European radar altimeter calibration and sea-level monitoring site for Jason, Envisat and EURO-GLOSS Objectives Establish an absolute sea-level monitoring and altimeter calibration permanent facility on the isle of Gavdos Conduct tide-gauge measurements as well as direct altimeter transponder, Global Positioning System (GPS), Doppler Orbitography by Radio-positioning Integrated on Satellite (DORIS) and Satellite Laser Ranging (SLR) measurements for altimeter calibration Deliverables Jason absolute altimeter bias, Marine geoid, Sea level variations, local deformations / land displacements, etc. IWF/ÖAW GRAZ
3
Gavdos Calibration Work
Calibration of satellite radar altimeters a Gavdos Cal/Val facility using three different methodologies (S.P. Mertikas, et.al. 2010) Comparing sea level anomalies between the satellite and the in-situ observations BIAS = SSH_altim – SSH_tide_gauge ≈18±5 cm Relate measurements to the Mean Sea Level of CLS01_MSS BIAS = SSH_altim – MSS_CLS01 – SLA_tide_gauge Usage of a microwave transponder placed at the satellites ground-track BIAS = ALT_altim – range_altim – H_TRP IWF/ÖAW GRAZ
4
Microwave Altimeter Transponder
The principle of a microwave altimeter transponder is to receive, amplify and retransmit a satellite radar altimeter pulse. The emitted pulse is received by the altimeter on-board the satellite again with the 2-way travel-time of the pulse giving the range between the satellite and the transponder Technical specifications Minimal distortion of the signal High frequency stability Frequency: 13.7 GHz Bandwidth: 600 MHz High amplification rate Total gain: 77 dB Stable instrument delay Response delay: ns IWF/ÖAW GRAZ
5
TRP Location Deployment on Gavdos at DIAS Cross-over of Jason
3 km apart of Envisat ITRF2005 coordinates GPS campaign by S. Mertikas (Nov. 2010) Φ = 34°49‘ “ λ = 24°05‘ “ h = m IWF/ÖAW GRAZ
6
TRP Site Setup Housing Aluminium frame enveloped with fabric
Cover plate from acrylic glass Protection from wind, dust contamination, animals, etc. Electrical Power Supply 12 V car batteries recharched by solar panels (2x50 W) Modem Telecommanding Watchdog timer (daily at 0.0h) GSM/GPRS-modem for remote controlled TRP switch-on IWF/ÖAW GRAZ
7
Ocean vs. Point Target Response
IWF/ÖAW GRAZ IWF/ÖAW GRAZ
8
The Transponder Principle cont‘d
OSTM Level-2 S-IGDR Data Files 1 Hz / 20 Hz data Ku / C-band waveforms Latency: 2 days Provided by CNES (Envisat Picture) IWF/ÖAW GRAZ IWF/ÖAW GRAZ
9
ENVISAT Calibration Two years ENVISAT calibration campaign
TRP approx. 3km outside of footprint center RA-2 set to Preset Loop Output (PLO) mode RA2/MWR products analyzed RA2_science_level-1b RA2_average_waveforms RA-2 instrument bias: 39.0±3.3cm (Cristea at.al., TGRS ) IWF/ÖAW GRAZ
10
Jason Calibration Poseidon-2/3 instrument characteristics
Dual-band (C/Ku) pulse compression radar 128 waveform samples Frequency / PRF / t-res. = GHz / 2060 Hz / ns Operation modes Acquisition mode: Detects ocean returns and init. Tracking loops Tracking mode: Nominal mode for the altimeter Problem: The TRP signature is not visible in the waveform data Because: ▶ J-Tracking is more sensitive to coast/land transitions generating loss of tracking resulting to a 1.5 sec data gap (desc. passes) ▶ Gavdos is small enough to keep tracking the sea shifting the TRP outside of the altimeter ranging window (asc. passes) Calibration 2: Measures the transfer function of the internal receiver channel IWF/ÖAW GRAZ
11
Cal-2 Calibration Data Calibration-2 Mode
32 Individual Calibrations 128 bins 0.153 s Calibration-2 Mode NO absolute epoch time available! Dating of individual calibrations is known with 1s accuracy only 3.125 ns IWF/ÖAW GRAZ
12
Calibration Processing Concept
IWF/ÖAW GRAZ
13
Cal-2 Calibration Configuration
5 sec calibration waveforms ±1s ±1s 11 sec data gap IWF/ÖAW GRAZ
14
Data Screening Pass 050 Cycle 018 IWF/ÖAW GRAZ
15
Data Interpolation Densification to 20 Hz rate (cubic spline interpolation) Precise computation of point of closest approach (φ,λ) Crete 11s Gavdos φ λ IWF/ÖAW GRAZ
16
Individual Calibration Analysis
Definition/Estimation of maximum power reflection by 1)Maximum value of received energy 2)Max. val. of Gaussian fit to return power 3)Half ma. power at leading edge of Gaussian fit 4)Centroid of received energy IWF/ÖAW GRAZ
17
Individual Calibration Fitting
IWF/ÖAW GRAZ
18
Optimal Parabola Fit 32 Individual Calibrations 128 bins IWF/ÖAW GRAZ
19
Power Vertex Adjustment
Alignment of PCA of orbit vertex of fitted parabola Absolute time of PCA from orbit Absolute dating of bin #1 of individ. cal. #1 Altimeter range command Set for each calibration Provided by CNES on a pass-per-pass basis Ranging ambiguity IWF/ÖAW GRAZ
20
Geophysical Parameters
Range Wet Troposph. Source Uncorr. effect Cycle 50 Corr. Wet Troposph 0-30 cm 15 cm Dry troposphere 230 cm 229.5 cm Iono troposphere cm 1.6 cm Sea state bias 0-20 cm 8.8 cm Dry Troposph. Ionosph. Sea State Bias DOY IWF/ÖAW GRAZ
21
Range Correction m [m] [m] DOY IWF/ÖAW GRAZ
22
Sea Surface Height IWF/ÖAW GRAZ
23
Geophysical Correcitons
IWF/ÖAW GRAZ
24
Cal-2 Ranging Budget / Residual
Corrections Effect Magnitude (m) Calibration bin range Ambiguity Altimeter delay CoM Correction r Dry troposphere Wet (water vapour) Ionosphere TRP delay (electronic) TRP delay (geometric) Station marker eccentricity Slant range correction TRP ell.height Solid earth tides Geoid Ellipsoid Orbital height Residual IWF/ÖAW GRAZ
25
Outlook Analysis of full set of Cal-2 passes
Limited number of passes available Usage of precise orbits Provided with a 60 days latency DIODE DEM coupling mode Usage of onboard digital elevation model for pre-defining the altimeter tracking window Transponder calibration with nominal tracking rate (51 ms) Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Cal. range Aux. Data 44 OK YES 45 fail 46 47 48 no CAL 49 50 51 52 53 54 55 56 57 Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Calibration Aux. Data 58 fail YES 59 no CAL 60 61 62 OK 63 64 65 66 67 68 69 70 71 72 IWF/ÖAW GRAZ
26
Figure Pool IWF/ÖAW GRAZ
27
Geophysical Corrections
Mean sea surface Solid Earth tide Geocentr. Ocean tide Pole tide height Inv. barom. height eff. HF fluctuations of SST IWF/ÖAW GRAZ
28
Orbit Slant Distance Range_ku TRP Altitude Sea Surface SSH Ellipsoid
IWF/ÖAW GRAZ
29
Date 2009/11/10 Time 14:19:34 Date Exec. CAL2 Only known to integer seconds ? Ho LSB Ho m NSPEC 3 NCAL 32
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.