Download presentation
Presentation is loading. Please wait.
Published byDaniela Melton Modified over 9 years ago
1
Production SchedulingP.C. Chang, IEM, YZU. 1 Modeling: Parameters Typical scheduling parameters: Number of resources (m machines, operators) Configuration and layout Resource capabilities Number of jobs (n) Job processing times (pij) Job release and due dates (resp. rij and dij ) Job weight (wij ) or priority Setup times
2
Production SchedulingP.C. Chang, IEM, YZU. 2 Modeling: Objective function Objectives and performance measures: Throughput, makespan (Cmax, weighted sum) Due date related objectives (Lmax, Tmax, ΣwjTj) Work-in-process (WIP), lead time (response time), finished inventory Total setup time Penalties due to lateness (ΣwjLj) Idle time Yield Multiple objectives may be used with weights
3
Production SchedulingP.C. Chang, IEM, YZU. 3 Modeling: Constraints Precedence constraints (linear vs. network) Routing constraints Material handling constraints (Sequence dependent) Setup times Transport times Preemption Machine eligibility Tooling/resource constraints Personnel (capability) scheduling constraints Storage/waiting constraints Resource capacity constraints
4
Production SchedulingP.C. Chang, IEM, YZU. 4 Machine configurations: Single-machine vs. parallel-machine Flow shop vs. job shop Processing characteristics: Sequence dependent setup times and costs –length of setup depends on jobs –s ijk : setup time for processing job j after k on machine i –costs: waste of material, labor Preemptions –interrupt the processing of one job to process another with a higher priority
5
Production SchedulingP.C. Chang, IEM, YZU. 5 Generic notation of scheduling problem MachineJobObjective characteristicscharacteristicsfunction for example: Pm | rj, prmp | ΣwjCj(parallel machines) 1 | sjk | Cmax (sequence dependent setup / traveling salesman) Q2 | prec | ΣwjTj(2 machines w. different speed, precedence rel., weighted tardiness)
6
Production SchedulingP.C. Chang, IEM, YZU. 6 Scheduling models Deterministic models –input matches realization vs. Stochastic models –distributions of processing times, release and due dates, etc. known in advance –outcome/realization of distribution known at completion
7
Production SchedulingP.C. Chang, IEM, YZU. 7 Symbol : Job number : Machine number : Arrival time : Processing time of job : Completion time of job : due date T: Tardiness E: Earliness
8
Production SchedulingP.C. Chang, IEM, YZU. 8 Static V.S. Dynamic Static Assume all the jobs are ready at the beginning which means a i =0 Dynamic Each job with a different arrival time. Which a i ≠0
9
Production SchedulingP.C. Chang, IEM, YZU. 9 Large Scale Problem (man-made) available solution space unavailable solution space Upper Bound Lower Bound approach Optimum (Heuristic) (Release Constraints)
10
Production SchedulingP.C. Chang, IEM, YZU. 10 Performance Measure 1.Completion Time Cmax = Max C i = C 6 指工件集合 s 中,最晚之完工時間,即指 Cmax. (Makespan) 2.Minimize Inventory fi : 庫存降低 fi = C i – a i ( Static Problem : ai=0) 3.Satisfy Due Date Tardiness = Max(Ci-di, 0 ) Earliness = Max(di-Ci, 0 ) JIT = Ci-di 4.Bi-criteria Multi-Objective (flow time = waiting time + process time)
11
Production SchedulingP.C. Chang, IEM, YZU. 11 Compute flow time 4 12 3 0 5 8 12 13 5 5 3 3 3 4 1 5 3 4 1 第 i 順位之 P i
12
Production SchedulingP.C. Chang, IEM, YZU. 12 Gantt Chart 64512 3 d 3 c 3 d 1 c 2 d 2 c 1 d 4 c 5 c 4 d 5 d 6 c6c6 = tardiness c4 > d4 jobs are ready flow time c2 – a2
13
Production SchedulingP.C. Chang, IEM, YZU. 13 Scheduling Problem Representation 4 / 1 / (n / m / o ) # job # machine objective function..........
14
Production SchedulingP.C. Chang, IEM, YZU. 14 Example: A factory has receive 4 different orders as follows ipidi 159 234 347 413 Please assign the production sequence of the 4 jobs to satisfy: 1.Due Date 2.Min Inventory
15
Production SchedulingP.C. Chang, IEM, YZU. 15 Sol. 1. Using FCFS (First come first serve) 4 12 3 0 5 8 12 13 1-2-3-4
16
Production SchedulingP.C. Chang, IEM, YZU. 16 Sol. 2.Using EDD (Earliest Due Date) 4 12 3 0 1 4 8 13 4-2-3-1
17
Production SchedulingP.C. Chang, IEM, YZU. 17 Sol. 3.Using SPT (Shortest Processing Time) The same with EDD Optimum 4 12 3 0 1 4 8 13 4-2-3-1 EDD – Due Date – Tmax SPT – Inventory - Flow time
18
Production SchedulingP.C. Chang, IEM, YZU. 18 Bi-criterion Frontier EDD SPT
19
Production SchedulingP.C. Chang, IEM, YZU. 19 HW. 5 / 1 / ipidi 1313 228 359 447 5610 Draw the Frontier when
20
Production SchedulingP.C. Chang, IEM, YZU. 20 Dynamic Problem Example: 4 / 1 / iaiai pidi 1359 2534 3247 4413
21
Production SchedulingP.C. Chang, IEM, YZU. 21 Sol. 4 12 3 0 3 8 11 15 16 1. Using Job index1-2-3-4 Ck > ai, C1 ≧ a2 - no idle time Else, if ai > Ck, a2 > C1 - idle 5 5 -2 5 +1 5 -1 =18 3 3 3 = 9 4 4 = 8 1 = 1 36 or 3-5 3-2 3-4
22
Production SchedulingP.C. Chang, IEM, YZU. 22 Sol. 4 12 3 0 4 5 8 12 17 2. Using SPT. EDD4-2-3-1
23
Production SchedulingP.C. Chang, IEM, YZU. 23 Sol. 4 12 3 0 2 6 7 10 15 3. Using FCFS then SPT (ESPT) 從 Available jobs 找 SPT 3-4-2-1 Static (SPT) 排了工件 3 之後, Dynamic 問題變 為 Static ,所以 SPT 每個工件輪流排第一來比較
24
Production SchedulingP.C. Chang, IEM, YZU. 24 Rule ESPT
25
Production SchedulingP.C. Chang, IEM, YZU. 25 Ex:ESPT 1.find Min 2. 3.for min
26
Production SchedulingP.C. Chang, IEM, YZU. 26 Sol. 4 12 3 0 3 8 11 15 16 1. Using Job index1-2-3-4
27
Production SchedulingP.C. Chang, IEM, YZU. 27 Sol. 4 12 3 0 4 5 8 12 17 2.Using SPT 3.Using EEDD (next slide) 4-2-3-1
28
Production SchedulingP.C. Chang, IEM, YZU. 28 Rule EEDD
29
Production SchedulingP.C. Chang, IEM, YZU. 29 Ex:EEDD 1.find Min 2. 3.for min let 4.Return 3
30
Production SchedulingP.C. Chang, IEM, YZU. 30 HW. 1. 5 / 1 / 2. 5 / 1 / iaiai pipi didi 12615 27213 35825 41530 59328 Find an optimal solution!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.