Download presentation
1
Chapter 1 Motion in a straight line
Displacement vs Distance Average Velocity INSTANTANEOUS VELOCITY Acceleration the acceleration of gravity and falling objects 10/19/2011 Norah Ali Almoneef
2
1-2 Displacement vs Distance Average Velocity
Displacement is a vector that points from an object’s initial position to its final position and has a magnitude that equals the shortest distance between the two positions. _Only depends on the initial and final positions Independent of actual paths between the initial and final positions Distance is a scalar Depends on the initial and final positions as well as the actual path between them 10/19/2011 Norah Ali Almoneef
3
Displacement This type of x(t) plot shows the position of an object at any time, e.g., x (m) Position at t=3 s, x(3) = 1 m 3 t (s) 4 Displacement between t=1 s and t=5 s Dx = 1.0 m m = -1.0 m -3 10/19/2011 Norah Ali Almoneef
4
What is the distance traveled by the train ? Displacement =
Given the train’s initial position and its final position what is the displacement of the train? What is the distance traveled by the train ? Displacement = 10/19/2011 Norah Ali Almoneef
5
Example: A boy travels from D to A,A to B .B to C.C to D
Displacement from D to D ( which are initial and final points ) = 0 Distance traveled = = 24 m 10/19/2011 Norah Ali Almoneef
6
Example : Distance = 4 m + 3 m =7 m Displacement = 5 m 10/19/2011
Norah Ali Almoneef
7
Speed and Velocity The average speed being the distance traveled divided by the time required to cover the distance: How far does a jogger run in 1.5 hours (5400 s) if his average speed is 2.22 m /s? Distance = s x m / s = m 10/19/2011 Norah Ali Almoneef
8
Speed Speed can be defined in a couple of ways:
How fast something is moving The distance covered in a certain amount of time The rate of change of the position of an object Units for speed are: miles / hour (mi/hr) kilometers / hour (km/hr) feet / second (ft/s) This is the standard unit meters / second (m/s) 10/19/2011 Norah Ali Almoneef
9
10/19/2011 Norah Ali Almoneef
10
10/19/2011 Norah Ali Almoneef
11
example A particle moves along a straight line such that its position is defined by s = (t3 – 3 t2 + 2 ) m. Determine the velocity of the particle when t = 4 s. At t = 4 s, the velocity = 3 (4)2 – 6(4) = 24 m/s 10/19/2011 Norah Ali Almoneef
12
example What is 10/19/2011 Norah Ali Almoneef
13
example From A to B What is A B 10/19/2011 Norah Ali Almoneef
14
10/19/2011 Norah Ali Almoneef
15
10/19/2011 Norah Ali Almoneef
16
10/19/2011 Norah Ali Almoneef
17
1-3 INSTANTANEOUS VELOCITY
Instantaneous velocity – is how fast an object is moving at a particular instant. The position of a particle moving on the x axis is given by x = t – 2.1t2. What is its instantaneous velocity at t = 3.5 seconds? v = – (2)(2.1)t v = – (2)(2.1)(3.5) = -5.5 m/s example 10/19/2011 Norah Ali Almoneef
18
1 - 4 Acceleration Instantaneous acceleration
Acceleration: is a rate at which a velocity is changing. Instantaneous acceleration = dv / dt = d2 x / d t2 10/19/2011 Norah Ali Almoneef
19
Example A car’s velocity at the top of a hill is 10 m/s. Two seconds later it reaches the bottom of the hill with a velocity of 26 m/s. What is the acceleration of the car? The car is increasing its velocity by 8 m/s for every second it is moving. 10/19/2011 Norah Ali Almoneef
20
10/19/2011 Norah Ali Almoneef
21
Instantaneous Acceleration
Suppose a particle is moving in a straight line so that its position is given by the relationship x = (2.10 m/s2)t m. Find its instantaneous acceleration at 5 seconds. v = dx / dt = (3)(2.1)t2 a = dv / dt = (2)(3)(2.1)t at t= 5s a = (2)(3)(2.1)(5) = 63 m/s2 10/19/2011 Norah Ali Almoneef
22
example 10/19/2011 Norah Ali Almoneef
23
example OR Total distance travelled
A bullet train starts from rest from a station and travels along a straight horizontal track towards another station. The graph in fig. shows how the speed of the train varies withtime over the whole journey. Determine: (a) the total distance covered by the train, (b) the average speed of the train. A ) Total distance travelled Speed / ms-1 Time 40 2 12 16 OR Total distance travelled = ‘area under the graph’ = (1/2)( )(40) = 520 m Average speed = (total distance) / (total time ) = 520 / 16 = ms-1 10/19/2011 Norah Ali Almoneef
24
example : a car is traveling 30 m/s and approaches 10 m from an intersection when the driver sees a pedestrian and slams on his brakes and decelerates at a rate of 50 m/s2. (a) How long does it take the car to come to a stop? (b) how far does the car travel before coming to a stop? vf -vi= a t, where vo= 30 m/s, v = 0 m/s, and a = -50 m/s2 t = (0 -30)/(-50) = 0.6 s Δx= vit + ½ a t2= (30)(0.6) + ½(-50)(0.6)2= = 9 m 10/19/2011 Norah Ali Almoneef
25
1.5 finding the motion of an object
Equations of Kinematics for Constant Acceleration 10/19/2011 Norah Ali Almoneef
26
example How long does it take a car going 30 m/sec to stop of it decelerates at 7 m/sec2? 10/19/2011 Norah Ali Almoneef
27
example - A car starting from rest attains a speed of 28 m/sec in 20 sec. Find the acceleration of the car and the distance it travels in this time. 10/19/2011 Norah Ali Almoneef
28
10/19/2011 Norah Ali Almoneef
29
1. Velocity & acceleration are both vectors
1. Velocity & acceleration are both vectors. Are the velocity and the acceleration always in the same direction? NO!! If the object is slowing down, the acceleration vector is in the opposite direction of the velocity vector! 2. Velocity & acceleration are vectors. Is it possible for an object to have a zero acceleration and a non-zero velocity? YES!! If the object is moving at a constant velocity, the acceleration vector is zero! 10/19/2011 Norah Ali Almoneef
30
10/19/2011 Norah Ali Almoneef
31
Examples : 1 ) What is the acceleration of a car that increased its speed from 10 m/s to 30 m/s in 4 seconds? a = (30 m/s – 10 m/s) ÷ 4s = 20 m/s ÷ 4s = 5 m/s2 2)the same car now slows down back to 10 m/s in 5 seconds. What is his acceleration? a = (10 m/s – 30 m/s) ÷ 5s = (- 20 m/s) ÷ 5s = - 4 m/s2 Means slowing down 10/19/2011 Norah Ali Almoneef
32
Graphical Analysis *deduce from the shape of a speed-time graph when a body is: (i) at rest (ii) moving with uniform speed (iii) moving with uniform acceleration (iv) moving with non-uniform acceleration Velocity (i) at rest (ii) moving with uniform speed (iii) moving with uniform acceleration (iv) moving with non-uniform acceleration (ii) (iii) (iv) (i) 10/19/2011 Norah Ali Almoneef Time
33
example 10/19/2011 Norah Ali Almoneef
34
A bus stopped at a bus-stop for 10 seconds before accelerating to a velocity of 15 m/s in 4 seconds and then at a constant speed for the next 9 seconds. How does the graph look like? How far did the bus go in this 23 seconds? Distance travelled in first 10 seconds is zero Distance travelled in the next 4 seconds is = ½ x 4 x 15 = 30 m Distance travelled in the final 9 seconds is = 9 x 15 = 135 m Total distance travelled = 165 m Velocity /m/s (ii) 15 (iii) (i) 10 14 23 Time/s 10/19/2011 Norah Ali Almoneef
35
10/19/2011 Norah Ali Almoneef
36
1.6 the acceleration of gravity and falling objects
Objects thrown straight up The acceleration of a falling object is due to the force of gravity between the object and the earth. Galileo showed that falling objects accelerate equally, neglecting air resistance. Galileo found that all things fall at the same rate. On the surface of the earth, in a vacuum, all objects accelerate towards the surface of the earth at 9.8 m/s2. The acceleration of gravity (g) for objects in free fall at the earth's surface is 9.8 m/s2. ( down ward ) g actually changes as we move to higher altitudes 10/19/2011 Norah Ali Almoneef
37
For free fall Equations of Kinematics for Constant Acceleration
10/19/2011 Norah Ali Almoneef
38
10/19/2011 Norah Ali Almoneef
39
A ball is dropped from a tall building and strikes the ground 4 seconds later. A ) what velocity does it strike the ground B ) what distance does it fall? 10/19/2011 Norah Ali Almoneef
40
g = - 10/19/2011 Norah Ali Almoneef
41
example How high can a human throw a ball if he can throw it with initial velocity 90 m / h?. 10/19/2011 Norah Ali Almoneef
42
example 10/19/2011 Norah Ali Almoneef
43
example 10/19/2011 Norah Ali Almoneef
44
Notice in free fall 10/19/2011 Norah Ali Almoneef
45
Word clues to numbers for problem solving
“free-fall” acceleration due to gravity a=9.8m/s2, down “at rest” not moving v=0 “dropped” starts at rest and free-fall vi=0 and a=9.81m/s2, down “constant velocity” no acceleration a=0 “stops” final velocity is zero vf=0 10/19/2011 Norah Ali Almoneef
46
Summary 2. Time interval: 1.Displacement: 2. Average velocity:
3.Instantaneous velocity: 4. Average acceleration: 5.nstantaneous acceleration: 10/19/2011 Norah Ali Almoneef
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.