Download presentation
Presentation is loading. Please wait.
Published byBeverley Freeman Modified over 9 years ago
1
Prime Numbers With Mrs Ford
2
Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was a scroll.
3
Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was a Greek mathematician, astronomer, and geographer. He invented a method for finding prime numbers that is still used today. This method is called Eratosthenes’ Sieve.
4
Eratosthenes’ Sieve A A sieve has holes in it and is used to filter out the juice. Eratosthenes’s Eratosthenes’s sieve filters out numbers to find the prime numbers.
5
Definition Definition Factor Factor – a number that is multiplied by another to give a product. 7 x 8 = 56 Factors
6
Definition Factor Factor – a number that divides evenly into another. 56 ÷ 8 = 7 Factor
7
Definition Prime Number Number – a number that has only two factors, itself and 1. 7 7 is prime because the only numbers that will divide into it evenly are 1 and 7.
8
Hundreds Chart On On graph paper, make a chart of the numbers from 1 to 100, with 10 numbers in each row.
9
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 Hundreds Chart
10
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 1 – Cross out 1; it is not prime.
11
Hint For Next Step Remember all numbers divisible by 2 are even numbers.
12
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 2 – Leave 2; cross out multiples of 2
13
Hint For Next Step To To find multiples of 3, add the digits of a number; see if you can divide this number evenly by 3; then the number is a multiple of 3. 2 6 7 Total of digits = 15 3 divides evenly into 15 267 is a multiple of 3
14
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 3– Leave 3; cross out multiples of 3
15
To To find the multiples of 5 look for numbers that end with the digit 0 and 5. Hint For the Next Step 385 is a multiple of 5 & 890 is a multiple of 5 because the last digit ends with 0 or 5.
16
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 4– Leave 5; cross out multiples of 5
17
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 5– Leave 7; cross out multiples of 7
18
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 6–Leave 11; cross out multiples of 11
19
12345678910 11121314151617181920 21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100 All the numbers left are prime
20
The Prime Numbers from 1 to 100 are as follows: 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
21
THE END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.