Download presentation
Presentation is loading. Please wait.
Published byAugustus Bruce Modified over 9 years ago
1
Charm Physics @ Klaus Peters Ruhr-Universität Bochum and GSI Darmstadt Beijing, Jan 14, 2004
2
2 K. Peters - Charm Physics @ Panda Where is Darmstadt ? GSI
3
3 K. Peters - Charm Physics @ Panda Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda
4
4 K. Peters - Charm Physics @ Panda The GSI Future Facility Existing GSI Facilities Hadron Physics Plasma Physics Condensed Baryonic Matter Atomic Physics Rare Isotope Beams
5
5 K. Peters - Charm Physics @ Panda The GSI Future Facility Panda
6
6 K. Peters - Charm Physics @ Panda The Antiproton Facility
7
7 K. Peters - Charm Physics @ Panda The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 10 7 /sec P beam = 1.5 - 15 GeV/c N stored = 5 x 10 10 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 10 32 cm -2 s -1 p/p ~ 10 -4 (stochastic cooling) High resolution mode p/p ~ 10 -5 (electron cooling) Luminosity = 10 31 cm -2 s -1
8
8 K. Peters - Charm Physics @ Panda QCD running coupling constant transition from perturbative to non-perturbative regime Q 2 [GeV 2 ]1010.10.05 perturbative QCDconstituent quark confinement mesons and baryons 00.10.31RnRn r [fm] Transition from the quark-gluon to the hadronic degrees of freedom perturbativestrong QCD
9
9 K. Peters - Charm Physics @ Panda Hybrid mixing Glueball mixing Level Mixing Light quark problem the mixing Mixing broad states high level density I=1I=0 nn I=0 ss I=½ a1a1 f1f1 f 1 ’K 1B b1b1 h1h1 h 1 ’K 1A J PC =J P+ J PC =J P- Kaon mixing strong interaction C undefined K 1A -K 1B Isoscalar mixing strong interaction I G, J PC identical η-η‘ Isospin mixing elm interaction ΔI=1 ρ-ω
10
10 K. Peters - Charm Physics @ Panda Level Mixing Light quark problem the mixing Mixing broad states high level density Better: narrow states and/or lower level density charmed systems !
11
11 K. Peters - Charm Physics @ Panda Charmonium Physics D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) M cc [GeV/c 2 ] η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 D*D* ψ(3 3 S 1 ) p p [GeV/c] ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 ) 3.4 4.1 4.8 5.5 6.3 7.1 8.0 J P =0 - 1-1- 1+1+ (0,1,2) + 2-2- (1,2,3) - … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions Open questions … η c – inconsistencies η c ’ - ψ(2S) splitting h 1c – unconfirmed Peculiar ψ(4040) Terra incognita for 2P and 1D-States
12
12 K. Peters - Charm Physics @ Panda It is extremely important to identify as many missing states above the open charm threshold as possible and to confirm the ones for which we only have a weak evidence This will require high-statistics small-step scans of the entire energy region accessible at HESR @ GSI Charmonium States above the DD threshold
13
13 K. Peters - Charm Physics @ Panda 35003520 MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays moderate mass resolution pp reactions: All states directly formed very good mass resolution CBall E835 1000 E 835 ev./pb c1 CBall, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000) 052002
14
14 K. Peters - Charm Physics @ Panda E CM Resonance Scan Measured Rate Beam Profile Resonanc e Cross Section small and well controlled beam momentum spread p/p is extremely important
15
15 K. Peters - Charm Physics @ Panda Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/ψ10 7 /d pp (>5.5 GeV/c) χ c2 (J/ψγ10 5 /d pp (>5.5 GeV/c) η c ´(10 4 /d| rec. ? Comparison of PANDA@HESR to E835 charged tracksdetector with magnetic field 15 GeV/cmaximum mom. instead of 9 GeV/c 10x higherLuminosity than achieved before 10x smallerδp/p stable conditionsdedicated high energy storage ring
16
16 K. Peters - Charm Physics @ Panda Charmed Hybrids LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states -potential for one-gluon exchange -potential from excited gluon flux m Hcc ~ 4.2-4.5 GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed important and r Breakup 3 3.5 4 1 2 R/r 0 V( R )/GeV J/ψ χcχc ψ‘ψ‘ HccHcc D
17
17 K. Peters - Charm Physics @ Panda S1S1 S2S2 S=S 1 +S 2 J=L+S P=(-1) L+1 C=(-1) L+S L Simplest Hybrids S-Wave+Gluon (qq) 8 g with () 8 =coloured 1 S 0 3 S 1 combined with a 1 + or 1 - gluon Gluon1 – (TM) 1 +(TE) 1 S 0, 0 –+ 1 ++ 1 –– 3 S 1, 1 –– 0 +- 0 –+ 1 +- 1 –+ 2 +- 2 –+ Exotic J PC cannot! be formed by qq
18
18 K. Peters - Charm Physics @ Panda Proton-Antiproton Annihilation Productionall J PC available Formationonly selected J PC p p recoil p p
19
19 K. Peters - Charm Physics @ Panda Proton-Antiproton Annihilation Gluon rich process creates gluonic excitation directly cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production even at low momenta large exotic content has been proven G M p p G p p Productionall J PC available only selected J PC p p H Formation nngnng H p p ssg/ccg M p p H nngnng M H p p
20
20 K. Peters - Charm Physics @ Panda Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f 0 (1500) ~25 % in 3 f 0 (1500) ~25 % in 2 1 (1400) >10 % in Interference with other well known (conventional) states is mandatory for the phase analysis Crystal Barrel
21
21 K. Peters - Charm Physics @ Panda 02468121510 p Momentum [GeV/c] Mass [GeV/c 2 ] Two body thresholds Molecules Gluonic Excitations qq Mesons 123456 Hybrids Hybrids+Recoil Glueball Glueball+Recoil ΛΛ ΣΣ ΞΞ ΛcΛcΣcΣcΞcΞcΛcΛcΣcΣcΞcΞc ΩcΩcΩcΩc ΩΩD DsDsDsDs qqccqqccqq nng,ssgccgccg ggg,gg light qq π,ρ,ω,f 2,K,K *c J/ψ, η c, χ cJ nng,ssgccgccg ggg Accessible Charmed Hadrons at PANDA @ GSI Other exotics with identical decay channels same region conventional charmonium exotic charmonium
22
22 K. Peters - Charm Physics @ Panda Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)4043 0 +- 2 +-
23
23 K. Peters - Charm Physics @ Panda Open charm discoveries The D S ± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 JPJP # 1267 53 Events in peak Combinatorial D S *+ D S *+ (2112) BABARBABAR D sJ * (2317)
24
24 K. Peters - Charm Physics @ Panda D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) 3937.00 +,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K + + - D s (1968.5)D s * (2112.4)4080.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K + + - D s * (2112.4) 4224.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K + + - D s (1968.5)D sJ * (2317.5)4286.00 -,1 +,2 -,3 +,4 - D s + (D s - 0 )2K - 2K + + - 0 D s (1968.5)D sJ (2458.5)4427.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K + + - 0 D s * (2112.4)D sJ * (2317.5)4429.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - 0 )2K - 2K + + - 0 D s (1968.5)D s1 (2535.4)4503.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4)4540.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K + + - ( 0 ) D s * (2112.4)D sJ (2458.5)4570.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K + + - 0 D sJ * (2317.5) 4635.00 +,1 -,2 +,3 -,4 + (D s + 0 )(D s - 0 )2K - 2K + + - 2 0 D s * (2112.4)D s1 (2535.4)4647.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4)4684.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K + + - ( 0 ) D s (1968.5)D 1 * (2770)4738.50 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - + - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5)4776.00 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + 0 )((D s - ) 0 )2K - 2K + + - 2 0 D s (1968.5)D 2 (2870)4838.50 +,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) + - )2K - 2K + 2 + 2 - D sJ * (2317.5)D s1 (2535.4)4852.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + 0 )(D *- K 0 )2K - K + K S + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770)4882.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - + - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ * (2572.4)4889.90 -,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + 0 )(D 0 K - )2K - 2K + + - (1-2) 0 D sJ (2458.5) 4917.00 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K + + - 2 0 D s * (2112.4)D 2 (2870)4982.40 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) + - )2K - 2K + 2 + 2 - D sJ (2458.5)D s1 (2535.4)4993.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S + 2 - (1-2) 0 D sJ (2458.5)D sJ * (2572.4)5030.90 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K + + - (1-2) 0 D s1 (2535.4) 5070.80 -,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0
25
25 K. Peters - Charm Physics @ Panda Charmonium mass shift in nuclear matter Quantu m numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop ηcηc 0 -+ –8 MeV [1]–5 MeV [4] J/ψ 1 -- –8 MeV [1]-10 MeV [3]–7 MeV [4]< 2 MeV [5] c0,1,2 0,1,2 ++ -40 MeV [2]-60 MeV [2] ψ(3686) 1 -- -100 MeV [2]< 30 MeV [2] ψ(3770) 1 -- -140 MeV [2]< 30 MeV [2] [1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355 [2] Lee, nucl-th/0310080 [3] Brodsky et al, PRL 64(1990)1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396 [5] Lee, Ko PRC 67(2003)038202
26
26 K. Peters - Charm Physics @ Panda Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium K 25 MeV 100 MeV K+K+ KK
27
27 K. Peters - Charm Physics @ Panda Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width (1D)Γ=2040 MeV (2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. 3 GeV/c 2 Mass 3.2 3.4 3.6 3.8 4 (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 ) c (1 1 S 0 ) (3 3 S 1 ) c2 (1 3 P 2 ) c1 (1 3 P 1 ) c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020
28
28 K. Peters - Charm Physics @ Panda J/ψ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable e+e+ ee J/ (e + e ) pb p(pbar) GeV/c 0 200 100 3.5 4.5 4.0 5.0 FF J/
29
29 K. Peters - Charm Physics @ Panda Further Experiments and Optional extensions Hypernuclear physics 3 rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q 2 s up to 25 GeV 2 /c 4 D (S) -Physics Spectroscopy: Threshold production BR and decay Dalitz plots with high statistics CP-Violation in the D-Sector
30
30 K. Peters - Charm Physics @ Panda Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π 0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)
31
31 K. Peters - Charm Physics @ Panda
32
32 K. Peters - Charm Physics @ Panda Tracking: Straw Tube Tracker Number of double layers Skew angle of dbl layers 1 and 15 Skew angle of dbl layers 2-14 15 0 o 2 o -3 o Straw tube wall thickness Wire thickness Gas Length Diameter of tubes in double layers 1-5, 6-10, and 11-15 Number of straw tubes 26 mm 20 mm 90%He 10%C 4 H 10 150 cm 4 mm 6 mm 8 mm 8734 Transverse resolution s x,y Longitudinal resolution s z 150 mm 1 mm
33
33 K. Peters - Charm Physics @ Panda PID: DIRC (Cherenkov) less space than aero gel costs of calorimeter no problems with field BaBar@SLAC
34
34 K. Peters - Charm Physics @ Panda Electromagnetic Calorimeter Detector materialPbWO 4 (or BGO) Photo sensorsAvalanche Photo Diodes Crystal size 35 x 35 x 150 mm 3 (i.e 1.5 x 1.5 R M 2 x 17 X 0 ) Energy resolution 1.54 % / E[GeV] + 0.3 % (PWO) Time resolution 130 ps Total number of crystals7150
35
35 K. Peters - Charm Physics @ Panda Simulation on ppψ(3770)DD using D ± K ± π ± π ± background signal-to-background 1:O(10 7 ) background from DPM generator plain reconstruction signal-to-background 6:1 mass difference Δm=m 2K4π -m K2π,a -m K2π,b m=Δm+2m D,PDG signal-to-background O(100):1 including Kalman fitting expect another factor of 5 3.33.43.53.63.73.83.944.14.24.3 Counts / 0.01 GeV / hour 20 40 60 80 100 120 140 160 180 Mass from Δm (GeV/c 2 ) 3.33.43.53.63.73.83.944.14.24.3 Counts / hour / 0.01 GeV 1 10 10 2 counts/hour/0.01 GeV Mass (GeV/c 2 )
36
36 K. Peters - Charm Physics @ Panda Simulation on ppη c γγ FermiLab E835 |cosθ * |<0.25 σ(η c γγ) = 200 nb signal-to-background 1:1 main background π 0 γ and π 0 π 0 main cuts missing mass squared <0.16 GeV 2 /c 4 cosθ γγ <-0.9999 signal-to-background (5.1±0.4):1 Mass (GeV/c 2 ) counts/10k/0.02 GeV 2.82.93 0 20 40 60 80 100 120 140 160 180
37
37 K. Peters - Charm Physics @ Panda Participating Institutes (with Representative in the Coordination Board) U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk 45 Institutes from 12 Countries: U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw U Warsaw
38
38 K. Peters - Charm Physics @ Panda Press Release 16/2003, http://www.bmbf.dehttp://www.bmbf.de 05.02.2003 Bulmahn gives green light for large-scale research equipment "We are securing an international top position for German basic research"...Basic research in the natural sciences has a long tradition in Germany. Its success is inextricably linked with the use of large-scale equipment at national and international research centres. "With the new concept, basic research in Germany will start from an excellent position when entering a new decade of successful work", Minister Bulmahn said. Together with European partners, the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt is to develop further its equipment in a phased approach and become a leading european physics centre. At least 25% of the costs amounting to €675 million are to be shouldered by foreign partners.
39
39 K. Peters - Charm Physics @ Panda Competition BES, BNL, CLEO-C, Da Φ ne, Hall-D, JHF TopicCompetitor Confinement Charmonium all cc states with high resolution CLEO-C only 1 –– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) Da Φ ne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics
40
40 K. Peters - Charm Physics @ Panda Summary & Outlook The PANDA experiment at the antiproton facility HESR @ GSI addresses many important questions in open and hidden charm physics Status: Letter of Intent: Jan. 15, 2004 Technical Report: Dec. 15, 2004 Technical Design Report: 2005-2007 Commissioning: 2011
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.