Download presentation
Presentation is loading. Please wait.
Published byEstella Garrett Modified over 9 years ago
1
Brief Announcement: Sorting on Skip Chains Ajoy K. Datta, Lawrence L. Larmore, and Stéphane Devismes
2
Skip Chain October, 11, 2011SSS'2011, Grenoble2 Left Right Major nodes Relay nodes
3
Skip Chain Sorting October, 11, 2011SSS'2011, Grenoble3 3 3 6 6 2 2 2 2 3 3 6 6
4
Contribution Skip Chain Sorting Algorithm – Self-stabilizing – Silent – Locally shared memory model Unfair demon O(b) space, b = number of bits to encode a value O(md) rounds – m : number of major nodes – d : maximum number of relay between two major nodes – md = O(n) if the spacing between major processes is roughtly equal October, 11, 2011SSS'2011, Grenoble4
5
Overview Idea : distributed bubble sort October, 11, 2011SSS'2011, Grenoble5 Arbitrary Configurations Normal Configurations Legitimate Configurations Error Correction Sorting
6
Data Structure October, 11, 2011SSS'2011, Grenoble6 3 3 2 2 6 6
7
Swap October, 11, 2011SSS'2011, Grenoble7 2 2 6 6 6 6 6 6 6 6 2 2 6 6 6 6 2 2 2 2 2 2 6 6 2 2 2 2 Synchronization between swaps : 4 colors
8
Colors A value moves to the left at the crest of wave 0 A value moves to the right at the crest of wave 1 Colors 2 and 3 to avoid ambiguïty and to synchronize Color E: error color October, 11, 2011SSS'2011, Grenoble8
9
Example October, 11, 2011SSS'2011, Grenoble9 X Yz 3 3 3 3 0 0 3 3 2 2 0 0 Compare and swap V(y)V(x)
10
Example October, 11, 2011SSS'2011, Grenoble10 X Yz 3 3 3 3 1 1 0 0 2 2 0 0 V(y)’V(x)’ 0, V(x)’1, V(y)’
11
Example October, 11, 2011SSS'2011, Grenoble11 X Yz 0 0 3 3 1 1 0 0 2 2 1 1 Compare and swap V(y)’V(x)’ V(y)’ V(u) V(x)’
12
Example October, 11, 2011SSS'2011, Grenoble12 X Yz 1 1 0 0 1 1 0 0 3 3 2 2 Compare and swap V(y)’V(x)’ V(x)’’ V(y)’ V(u)’ 2 1, V(x)’’
13
Example October, 11, 2011SSS'2011, Grenoble13 X Yz 1 1 0 0 2 2 1 1 3 3 2 2 V(y)’V(x)’’ V(y)’ V(u)’
14
Example October, 11, 2011SSS'2011, Grenoble14 X Yz 1 1 0 0 3 3 2 2 3 3 2 2 V(y)’V(x)’’ V(y)’ V(u)’ 2 3
15
Example October, 11, 2011SSS'2011, Grenoble15 X Yz 2 2 0 0 3 3 2 2 3 3 3 3 V(y)’V(x)’’ V(y)’ V(u)’
16
Example October, 11, 2011SSS'2011, Grenoble16 X Yz 2 2 1 1 3 3 2 2 0 0 3 3 V(y)’V(x)’’ V(y)’ V(z) V(u)’ Compare and swap
17
Example October, 11, 2011SSS'2011, Grenoble17 X Yz 3 3 2 2 3 3 2 2 1 1 0 0 V(y)’V(x)’’ V(y)’’ V(z)’ V(u)’ 0, V(y)’’ 3
18
Example October, 11, 2011SSS'2011, Grenoble18 X Yz 3 3 2 2 0 0 3 3 1 1 0 0 V(y)’’V(x)’’ V(y)’’ V(z)’ V(u)’
19
Example October, 11, 2011SSS'2011, Grenoble19 X Yz 3 3 3 3 0 0 3 3 2 2 0 0 V(y)’’V(x)’’ V(y)’’ V(z)’ V(u)’
20
Error correction October, 11, 2011SSS'2011, Grenoble20
21
Silence October, 11, 2011SSS'2011, Grenoble21 2 2 2 2 3 3 3 3 3 3 3 3 6 6 2 2 3 3 2 2 Done
22
Perspective Can we enhance the round complexity to O(n) rounds ? Step complexity ? October, 11, 2011SSS'2011, Grenoble22
23
Thank you October, 11, 2011SSS'2011, Grenoble23
24
Min-Max Search Tree October, 11, 2011SSS'2011, Grenoble24 10 1 1 9 9 5 5 8 8 4 4 7 7 6 6 2 2 <= 3 3 min max
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.