Download presentation
Presentation is loading. Please wait.
Published byJoy Barton Modified over 9 years ago
1
Ocean Heat and Freshwater Content: in situ measurements to climate indicator Tim Boyer Ocean Climate Lab/National Centers for Environmental Information Apr. 7, 2015
2
Ocean Climate Lab Team Subsurface Unit OCSD/CCOG Tim Boyer Ricardo Locarnini Christopher Paver Igor Smolyar Charles Sun Melissa Zweng Alexandra Grodsky (SciTech) Alexey Mishonov (CICS) Jim Reagan (CICS) Marine Ecosystems Unit OCSD/CCOG Olga Baranova Rost Parsons Dan Seidov Surface Unit OCSD/CCOG Daphne Johnson Archive Branch DSD Carla Coleman
3
Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 159–254, doi:10.1017/CBO9781107415324.008 Figure 2.11: | Global mean energy budget under present-day climate conditions. Numbers state magnitudes of the individual energy fluxes in W m–2, adjusted within their uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. (Adapted from Wild et al., 2013.)
4
Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 159–254, doi:10.1017/CBO9781107415324.008 Figure 2.11: | Global mean energy budget under present-day climate conditions. Numbers state magnitudes of the individual energy fluxes in W m–2, adjusted within their uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. (Adapted from Wild et al., 2013.)
5
5 Changes in Earth’s Heat Balance Components (10 22 J) During 1955-2003 (from Levitus, Antonov and Boyer, 2005, GRL) 83% or 0.5 W/m 2
6
How is Ocean Heat Content Changing? How do we reliably estimate the change? Levitus, S., et al. (2012), World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL0511010.1029/2012GL05110
7
The Global Water Cycle From The Global Water Cycle – Revising the Historical Representation: R. Schmitt http://www.whoi.edu/sbl/liteSite.do?litesiteid=18912&articleId=28329
8
The Global Water Cycle An Oceanographers View From The Global Water Cycle – Revising the Historical Representation: R. Schmitt http://www.whoi.edu/sbl/liteSite.do?litesiteid=18912&articleId=28329
9
Water Cycle Intensification: The salty getting saltier, the fresh getting fresher
10
10 Heat content equation for a water column A = area of ODSQ ρ = density of seawater C p = specific heat of seawater ΔT = temperature anomaly dz = thickness of the vertical layer of integration For each standard depth level temperature value in a T profile, we subtract the climatological mean to create an anomaly profile. We then compute anomalies by one-degree squares at each standard depth level and perform an objective analysis of each level. A
11
WOA13 salinity at 50 m depth for years 2005-2012 WOA13 temperature at 100 m depth at 1/4° grid resolution
12
World Ocean Database by Instrument Type 12
13
Growth of the World Ocean Database 13
14
(1a) OSD: 2,530,868 profiles (1b) MBT: 2,427,277 profiles (1c) XBT: 2,109,400 profiles (1d) CTD: 634,976 profiles (1e) UOR: 88,184 profiles (1f) PFL: 520,816 profiles (1g) MRB: 566,540 profiles (1h) DRB: 122,226 profiles (1i) APB: 89,558 profiles (1j) GLD: 5,857 profiles (1k) SUR: 9,178 profiles (1l) Plankton: 230,944 profiles World Ocean Database: World’s largest publicly available oceanographic profile database
15
147,833 Argo cycles from Coriolis DAC From GTSPP: 16,173 XBT 14,5219 CTD 3,970 pinniped* 20,499 glider Other sources: CCHDO, ICES, PIRATA, SOOP, North Fisheries, IMOS gliders, Ice buoy, CalCOFI, NIWA (New Zealand) more to come. Input Data for Ocean Heat/Salt Content Calculations for year 2013 (received to date) *Only used in test version at present
16
Temperature and salinity anomaly fields (from mean World Ocean Atlas 2009 climatology) calculated using input data for 2013. Shown are annual anomaly fields for 2013 at 100 m depth. Fields are calculated for 26 discrete depths surface to 2000 m for seasonal, annual, and pentadal (five year) time periods. Blue=colder/fresher than mean Red=warmer/saltier than mean
17
1934 : Nansen Cast 1960 : MBT 1985 : XBT 2009 : Argo Temperature Data During Peak of Different Observing Systems Red=Nansen Cast /CTD[1890s/1964] Light Blue=MBT [1939] Dark Blue=XBT [1967] Green=Argo float [2001] Orange=Tropical buoy [1984] 17 Abraham, J. P., M. Baringer, N. L. Bindoff, T. Boyer, L. J. Cheng, J. A. Church, J. L. Conroy, C. M. Domingues, J. T. Fasullo, J. Gilson, G. Goni, S. A. Good, J. M. Gorman, V. Gouretski, M. Ishii, G. C. Johnson, S. Kizu, J. M. Lyman, A. M. Macdonald, W. J. Minkowycz, S. E. Moffitt, M. Palmer, A. Piola, F. Reseghetti, K. E. Trenberth, I. Velicogna, S. E. Wijffels, J. K. Willis: Monitoring systems of global ocean heat content and the implications for climate change, a review. - Review of Geophysics, Vol. 51, pp 450-483
18
18 Data from international projects Left: GEOSECS bottle and CTD data (1972-1979) Right: WOCE CTD data (1990-1998)
19
19 Data from universities, fisheries Left: Bottle data from Hokkaido University (Japan) (1962-1994) Right: Temperature Data from US National Marine Fisheries (1964-1997)
20
20 Data Archeology and Rescue Cruise Reports found: Red/Yellow: Library of University of Tromso, Norway Blue: Public Library, St. Petersburg, Russia Green: Public Library, New York City, USA (in part)
21
Levitus, S., et al. (2012), World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL0511010.1029/2012GL05110
22
Sarah G. Purkey and Gregory C. Johnson, 2010: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets*. J. Climate, 23, 6336–6351. doi: http://dx.doi.org/10.1175/2010JCLI3682.1http://dx.doi.org/10.1175/2010JCLI3682.1 Mean local heat fluxes (a) and thermosteric sea level (b) through 4000 m implied by abyssal warming below 4000 m from the 1990s to the 2000s
24
24 Sea level anomaly in the subpolar North Atlantic + GIN Seas (50°N-66°N) from in situ temperature and salinity profiles (0-2000 meters)
25
25 Science and Data Community Convert Data to Common Format/Initial Quality Control Calculate Climatologies Secondary Quality Control Release Database With Quality Control Flags Scientific Research Post-release Quality Control Monthly database updates OCL/NCEI MAKE DATA AVAILABLE Publish Results FEEDBACK LOOP
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.