Presentation is loading. Please wait.

Presentation is loading. Please wait.

Positional Number Systems

Similar presentations


Presentation on theme: "Positional Number Systems"— Presentation transcript:

1 Positional Number Systems

2 Decimal Review 5049 = 5(1000) + 0(100) + 4(10) + 9(1)
5049 = 5· · · ·100 place digit

3 Binary Representation
27 = 27 = 1·24 + 1·23 + 0·22 + 1·21 + 1·20 27 = place digit

4 Some Binary Representations
010 ?2 110 210 310 410 510 610 710 810 910

5 Some Binary Representations
010 02 110 12 210 102 310 112 410 1002 510 1012 610 1102 710 1112 810 10002 910 10012

6 Powers of Two

7 Convert Binary to Decimal

8 Convert Binary to Decimal
= 53

9 Convert Decimal to Binary
20910 = smaller number = 1(128) + 81 = 1(128) smaller number = 1(128) + 1(64) + 17 = 1(128) + 1(64) + 0(32) + 1(16) + 1 1(128)+1(64)+0(32)+1(16)+0(8)+0(4)+0(2)+1(1) =

10 Binary Addition

11 Binary Addition carry

12 Binary Addition 12 + 12 1 02 12 12 + 12 1 12 1 1 carry
carry

13 Binary Addition 12 + 12 1 02 12 12 + 12 1 12 1 1 1 carry
carry

14 Binary Addition 12 + 12 1 02 12 12 + 12 1 12 1 1 1 carry
carry

15 Subtraction in Decimal System

16 Subtraction in Decimal System
borrowing

17 Subtraction in Decimal System
borrowing

18 Subtraction in Binary System

19 Subtraction in Binary System
borrowing

20 Subtraction in Binary System
borrowing

21 Two’s Complement Arithmetic
Computers often use 2’s complement arithmetic for working with signed numbers 2’s complement of a in n-bit arithmetic is the binary representation of 2n – a

22 Two’s Complement Example
The 8 bit representation of -27 is ( 28 – 27)10 = = Or flip the bits and add one -27 = = =

23 Two’s Complement Arithmetic
To subtract, take the two’s complement and then add. Otherwise just add the binary numbers and throw away any positions greater than 2n-1. If -2n-1  result < 2n-1 then everything is fine. Otherwise you have an overflow.

24 Hexadecimal Representations
Binary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25 Hexadecimal Representations
Binary 1 2 3 4 5 6 7 8 9 10 A 11 B 12 C 13 D 14 E 15 F

26 Hexadecimal Representations
Binary 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 A 1010 11 B 1011 12 C 1100 13 D 1101 14 E 1110 15 F 1111

27 Convert Hexadecimal to Decimal
3CF16 = 3(162) + 12(161) + 15(160) = 97510

28 Convert Hexadecimal to Binary
C50A16 C A

29 Convert Binary to Hexadecimal
D A


Download ppt "Positional Number Systems"

Similar presentations


Ads by Google