Download presentation
Presentation is loading. Please wait.
Published byErica Reynolds Modified over 9 years ago
1
Mechanical Response at Very Small Scale Lecture 3: The Microscopic Basis of Elasticity Anne Tanguy University of Lyon (France)
2
III. Microscopic basis of Elasticity. A.The Cauchy-Born theory of solids (1915). 1)General expression of microscopic and continuous energy. 2)The microscopic expression for Stresses. 3)The microscopic expression for Elastic Moduli. B. The coarse-grained theory for microscopic elasticity (2005). 1)Coarse-grained displacement and fluctuations 2)The microscopic expression for Stresses. 3)The computation of Local Elastic Moduli. S. Alexander, Physics Reports 296,65 (1998) C. Goldenberg and I. Goldhirsch (2005)
3
Microscopic expression for the local Elastic Moduli: Simple example of a cubic crystal. On each bond: strain stress elastic modulus
4
A. The Cauchy-Born Theory of Solids (1915). i j k j Regular expression of the Many-particles Energy: N particles D dimensions N.D parameters -D(D+1)/2 rigid translations and rotations N.D –D(D+1)/2 independent distances 2-body interactions (Cauchy model) Ex. Lennard-Jones Foams BKS model for Silica 3-body inter. Ex. Silicon
5
Expression of local forces: Internal force exerted on atom i: Force of atom j on atom i: with Tension of the bond (i,j) in the configuration {r}. The equilibrium on each atom i writes: thus
6
Particles displacement, and strain: i j uiui ujuj r ij eq r ij u ij u ij P u ij T
7
First order expansion of the energy, and local stresses: To compare with:
8
First order expansion of the energy, and local stresses: To compare with: « Site stress »: Local stress:
9
Second order expansion of the energy, local Elastic Moduli: with Local stiffness bound elongation rotation
10
Born-Huang approximation for local Elastic Moduli: T ij =0 To compare with:
11
Born-Huang approximation for local Elastic Moduli: 2-body contribution (central forces): (i 1 i 2 )=(i 3 i 4 ) n=1/2 i 3-body contribution (angular bending): i=i 1 and i=i 3 or i=i 4 n=2/3 i 4-body interactions (twists): (i 1 i 2 ) ≠ (i 3 i 4 ) n=2/4
12
Number of independent Elastic Moduli, from the microscopic expression: Warning: C MACRO ≠ (cf. lecture 4) C =C and C =C 36 moduli C =C 21 moduli Additional symetries, for 2-body interactions (Cauchy model): Permutations of all indices: C =C and C =C (Cauchy relations for 2-body interactions) 3 C + 6 C + 3 C + 3 C 15 moduli.
13
B. The coarse-grained theory for microscopic elasticity For ex. with and
14
1) Coarse-grained displacement: Velocity dependent
15
Separate coarse-grained (continuous) response, and « fluctuations »: C. Goldenberg et I. Goldhirsch (2004) gaussian funct. of width w continuous Coarse-grained displacement and fluctuations:
16
2) Microscopic expression for Stresses
18
cf. Note that, at this level, there is no explicit linear relation between and !!
19
Use of the coarse-grained (continuous) disp. field for the computation of local elastic moduli: Gaussian with a width w ~ 2 using 3 independent deformations for a 2D system strain stress 2D case:
20
C 1 ~ 2 1 C 2 ~ 2 2 C 3 ~ 2 ( + 2D Jennard-Jones w=5 a N = 216 225 L = 483 a Maps of local elastic moduli:
21
Large scale convergence to homogeneous and isotropic elasticity: Elastic Moduli: Locally inhomogeneous and anisotropic. Progressive convergence to the macroscopic moduli and homogeneous and isotropic. Faster convergence of compressibility. No size dependence, but no characteristic size ! ~ 1/w
22
1% Departure from local Hooke’s law, for r < 5 a. Which characteristic size ? ? At small scale w: ambigous definition of elastic moduli (9 uncoherent equations for 6 unknowns) Error function: Local rotations? Long-range interactions ? Role of the « fluctuations » ?
23
Bibliography: I. Disordered Materials K. Binder and W. Kob « Glassy Materials and disordered solids » (WS, 2005) S. R. Elliott « Physics of amorphous materials » (Wiley, 1989) II. Classical continuum theory of elasticity J. Salençon « Handbook of Continuum Mechanics » (Springer, 2001) L. Landau and E. Lifchitz « Théorie de l’élasticité ». III. Microscopic basis of Elasticity S. Alexander Physics Reports 296,65 (1998) C. Goldenberg and I. Goldhirsch « Handbook of Theoretical and Computational Nanotechnology » Reith ed. (American scientific, 2005) IV. Elasticity of Disordered Materials B.A. DiDonna and T. Lubensky « Non-affine correlations in Random elastic Media » (2005) C. Maloney « Correlations in the Elastic Response of Dense Random Packings » (2006) Salvatore Torquato « Random Heterogeneous Materials » Springer ed. (2002) V. Sound propagation Ping Sheng « Introduction to wave scattering, Localization, and Mesoscopic Phenomena » (Academic Press 1995) V. Gurevich, D. Parshin and H. Schober Physical review B 67, 094203 (2003)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.