Download presentation
Presentation is loading. Please wait.
Published byLiliana MargaretMargaret Palmer Modified over 9 years ago
1
Introduction to the Biology of Spoilage Yeasts and Brettanomyces Linda F. Bisson Department of Viticulture and Enology University of California
2
Presentation Outline Introduction to Yeast Spoilage The Biology of Brettanomyces
3
INTRODUCTION TO YEAST SPOILAGE
4
Types of Yeast Spoilage Film formers Residual sugar utilizers Survivalists
5
Film Formers Candida, Pichia –Candida spp –P. anomala –P. membranifaciens Torulaspora Hansenula Dependent upon oxygen exposure and head space May be aromatically neutral or sources of off-aromas
6
Residual Sugar Utilizers Saccharomyces Zygosaccharomyces –Z. bailii –Z. bisporous –Z. rouxii Saccharomycodes ludwigii Can grow in bottle post-bottling Can form turbidity and be aromatically neutral Can form off-characters
7
Survivalists Brettanomyces/Dekkera Pichia guilliermondii Produce off-characters
8
Types of Yeast Spoilage Off-character Turbidity Films and sediments
9
THE BIOLOGY OF BRETTANOMYCES/DEKKERA
10
Historical Background Brettanomyces is a budding yeast found widely distributed in nature. Discovered in beer in 1904 (Claussen), in wine (Krumbholz & Tauschanoff, 1930) and again in 1940 (Custers). Results in a variety of aromas. –English Character or Lambic Beers. –Spoilage/Regional Character in wines.
11
Taxonomy Anamorphic/non-sexual form: Brettanomyces Teleomorphic/sexual form: Dekkera Several species are found: B. bruxellensis, B. anomala, B. custerianus Characteristic traits: –Ascomycete yeast –Reproduce by budding –Observation of sporulation is rare –Pseudohyphae formed –Fermentation end products: acetic acid and CO 2 dominate –Fermentation more rapid in presence of air: Custer ’ s effect
12
Morphology Cell Morphology –Ogival, bullet shaped, non-uniform –Sometimes arranged in pseudohyphae. Ascospore Morphology –Conquistador hat- shaped –1 to 4 spores/ascus
13
Brettanomyces Genomics Chromosomal number varies by strain Chromosome configuration not well preserved Not a simple haploid or diploid –Hybrid between two strains with similar but different genomes? –Diploid progenitor that lost the ability to engage in sexual reproduction (genome renewal) Accumulation of allelic differences and polymorphisms –Hyper-mutagenic? –Defective in repair?
14
Brettanomyces Characteristics Custer’s effect: oxygen stimulates glycolysis Capable of ethanol production from sugars anaerobially Produce acetic acid from sugars aerobically Can produce viable petite (non-fermenting) off-spring
15
Brettanomyces vs. Saccharomyces Saccharomyces: grows 5 times faster Brettanomyces has slightly higher ethanol yields (10- 15%) Saccharomyces produces more glycerol (6 fold higher) Brettanomyces produces more biomass (20 to 30% more) Brettanomyces more tolerant of large changes in pH and temperature Brettanomyces has a more energy-efficient metabolism
16
Metabolism of Brettanomyces Can use numerous sugars, ethanol, other carbon compounds, and even amino acids as carbon sources Can survive in very nutrient poor condition Can survive extreme environments and is found in VNC states Produces diverse metabolic end products from grape components: »Volatile Phenols »Tetrahydropyrazines
17
Brettanomyces and Oxygen Oxygen stimulates growth, acetic acid formation and glycolysis (Custer’s effect) Oxidation of acetaldehyde to acetic acid is favored over reduction to alcohol Leads to depletion of NAD + Requires co-substrates or oxygen for acetic acid production Redox state of cytoplasm has a strong impact on metabolites produced
18
Brettanomyces Spoilage Characters Vinyl phenols Ethyl phenols Biogenic amines –Putrescine –Cadaverine –Spermidine Acetic acid
19
Vinyl Phenol Formation Detoxification? Co-Substrate?
20
Vinyl Phenol Formation 4-EP formation is growth associated 4-EP formation not correlated with acetic acid formation High 4-EP producers tolerate higher environmental levels of p-coumaric acid
21
Production of Vinyl Phenols by Brettanomyces
22
Is That Smell Desirable? Three main spoilage compounds: –4-Ethylphenol (band aid) –4-Ethylguaiacol (smoky medicinal) –4-Ethylcatechol (horsy) Detection threshold varies with varietal from 126 to 420 ppb of 4-EP depending upon matrix Recovery Thresholds: –50% of tasters can detect 605 ppb in wine or 440 ppb in water of 4-EP Chatonnet has defined spoilage as: –>426 ppb of 4-EP and 4-EG –>620 ppb of 4-EP
23
Incidence of Spoilage Country>426ppb>620ppb France 36% 28% Italy 49% 19% Australia 59% 46% Portugal 42% 27% Wines may contain up to 50 ppm (!) of 4-EP
24
Brett Signature Taints Tasting Glass 1: Control (Merlot) Glass 2: 1000ppb 4-EP Glass 3: 620 ppb 4-EP Glass 4: 400ppb 4-EG Glass 5: 430: 350ppb 4-EP + 80 4-EG Glass 6: 2200: 1800 4-EP + 400 4-EG
25
Brett Alternative Substrates Tasting Glass 1: Control: Brett in media minus supplements Glass 2: Ferulic acid Glass 3: Coumaric acid Glass 4: Phenylalanine Glass 5: Tryptophan and Tyrosine Glass 6: Lysine
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.