Download presentation
Published byGrant Leonard Modified over 9 years ago
2
Neuroanatomy
3
Neuroanatomy refers to the study of the parts and function of neurons.
Neurons are individual nerve cells. The entirety of the human body’s neurons make up the nervous system, from the brain to the tips of the toes.
4
Neuron The basic building block of the nervous system -- a nerve cell
Neurons perform three basic tasks Receive information Carry the information Pass the information on to the next neuron
5
The Basic Parts of a Neuron
6
A. Dendrites Thin, branching fibers lined with receptors at which the dendrite receives information from other neurons. The greater the surface area, the greater the amount of information. Some dendrites are covered with spines which greatly increase its surface area.
7
B. Cell Body/Soma Contains the (C) nucleus and other parts of the cell needed to sustain life
8
D. Axon Wire-like structure ending in the terminal buttons that extends from the cell body
9
E. Myelin Sheath An insulating, fatty covering around the axon that speeds neural transmissions. Axons that are myelinated appear white. Known as “white matter.”
10
F. Schwann Cells Provide for the growth of the myelin sheath.
11
G. Nodes of Ranvier Regularly spaced gaps in the myelin sheath around an axon or nerve fiber. This is where depolarization takes place.
12
H. Terminal Buttons The branched end of the axon that contains neurotransmitters
13
Neural Transmission
14
Synapse The space between the terminal buttons on one neuron and dendrites of the next neuron
15
Neurotransmitters Chemicals contained in the terminal buttons that enable neurons to communicate. Neurotransmitters fit into receptor sites on the dendrites of neurons like a key fits into a lock.
17
Neurotransmitters
18
At the terminal buttons, neurotransmitters are released into the synapse and passed along to the dendrites of the next neuron.
19
If enough neurotransmitters have been sent, the next neuron will fire
If enough neurotransmitters have been sent, the next neuron will fire. If not, the message ends. This is called the all-or-nothing principle.
20
All-or-None Principle
The principle that if a neuron fires it will always fire at the same intensity All action potentials are of the same strength. A neuron does NOT fire at 30%, 45% or 90% but at 100% each time it fires.
23
Resting Potential The state of a neuron when it is at rest and capable of generating an action potential The neuron is set and ready to fire
24
Resting Potential While in resting potential, a neuron is said to be “Polarized” negative ions are within the cell. Surrounding the cell are positively charged ions. The ions cannot mix while in this stage
25
A neuron has a pre-set level of stimulation that needs to be met or exceeded in order for it to pass the received impulses on to the next neuron. This is called a neuron’s threshold.
26
If the threshold has been met a chain reaction begins.
The cell becomes depolarized and allows positively charged ions into the axon at the nodes of ranvier.
28
Axon – inside and out
29
Action Potential This mix of positive and negative ions causes an electrical charge to form (an action potential). A brief electrical charge that travels down the axon of the neuron. A neural impulse Considered an “on” condition of the neuron
30
Once the refractory period is complete the neuron can fire again
The “recharging phase” when a neuron, after firing, cannot generate another action potential Once the refractory period is complete the neuron can fire again
31
Refractory Period Excess neurotransmitters are reabsorbed by the sending neuron – this is called re-uptake The cell becoming polarized once again.
35
Neuron firing like a Toilet
Like a Neuron, a toilet has an action potential. When you flush, an “impulse” is sent down the sewer pipe
36
Neuron firing like a Toilet
2. Like a neuron, a toilet has a refractory period. There is a short delay after flushing when the toilet cannot be flushed again because the tank is being refilled
37
Neuron firing like a Toilet
Like a Neuron, a toilet has a resting potential. The toilet is “charged” when there is water in the tank and it is capable of being flushed again Like a Neuron, a toilet operates on the all-or-none principle – it always flushes with the same intensity, no matter how much force you apply to the handle
39
Click here to see a neuron in action!
Click here to see a quick summary!
40
Depending on what type of neurotransmitter has been released, the next neuron will react differently. ….so, since the entire body is a connection of nerves, …
41
Inhibitory vs Excitatory
Inhibitory neurotransmitters decrease the likelihood of the firing action potential of a cell while Excitatory neurotransmitters increase the likelihood of action potential
42
Acetylcholine (ACh) Excitatory Involved in muscle action, learning, and memory Undersupply - Alzheimer’s disease
43
Dopamine Inhibitory: Pleasure, Reward and Motivation, Motor Control over Voluntary Movements Excessive dopamine linked to schizophrenia;
44
Serotonin Inhibitory Affects mood, hunger, sleep, and arousal
Undersupply is linked to depression; Prozac and other anti-depressants raise serotonin levels
45
Epinephrine and Norepinephrine
Excitatory: Used for arousal in the flight/fight response, plays a role in learning and memory retrieval Adrenaline Burst of Energy (small amounts in brain) Undersupply can depress mood
46
GABA Inhibitory: offsets excitatory messages (see Glutamate); helps regulate daily sleep-wake cycles Undersupply linked to anxiety, seizures, tremors, and insomnia
47
Glutamate Excitatory Involved in memory, learning and movement
Oversupply can overstimulate the brain, producing migraines or seizures (epilepsy)
48
Endorphins Inhibitory: Natural opiates that are involved in pain perception and positive emotions released in response to pain and vigorous exercise
49
Drugs and Chemicals Interact with Neural Transmission
50
Some drugs that people put into their bodies are classified as agonists.
Agonists may either speed up the neural process, cause an over-release or absorption of a neurotransmitter, or block the re-uptake process.
51
Prozac blocking the re-uptake of Serotonin
52
Some agonists mimic the effects of a naturally occurring neurotransmitter
Agonist (like morphine – replacing natural endorphines) Dendrite of receiving Neuron
53
If re-uptake is blocked, the lingering neurotransmitters in the synapse will continue to be absorbed until it is gone. Therefore, a lingering feeling will occur
54
Cocaine – blocks the re-uptake of dopamine
Examples of Agonists Cocaine – blocks the re-uptake of dopamine MDMA (Ecstasy) – blocks the reuptake of serotonin Repeated use destroys serotonin producing cells
55
Some drugs that people put into their bodies are classified as antagonists.
Antagonists may slow or stop the transmission of a neurotransmitter, or they may bind themselves to receptors on a neuron’s dendrite, thus not allowing a message to be passed on.
56
Examples of Antagonists
Curare – a poison that stops the flow of Ach – causes paralysis Antagonist (like curare) Neurotransmitter (such as Ach) Dendrite of receiving Neuron
57
There are three types of neurons:
Afferent Neurons (Sensory Neurons) Interneurons Efferent Neurons (Motor Neurons)
58
Types of Neurons Afferents, or “sensory neurons”, carry information from the body to the brain
59
Types of Neurons Interneurons, found in the spinal cord and the brain interpret incoming information and determine the next course of action
60
Types of Neurons Efferents, or “motor neurons”, carry information from the spinal cord or the brain to the rest of the body in order to initiate behavior
61
The exceptions to the “general pathway” of neural activity are reflexes.
62
Reflexes are controlled by the spinal cord without any conscious effort on behalf of the brain.
63
Reflexes are primitive responses
protect our bodies from danger
64
Yawning (too much carbon dioxide in the blood)
Reflex Coughing Blinking Yawning (too much carbon dioxide in the blood) ….etc…….
65
Reflex Sensory to spinal cord to motor… no brain processing involved….
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.