Presentation is loading. Please wait.

Presentation is loading. Please wait.

PVE for MRI Brain Tissue Classification Zeng Dong SLST, UESTC 6-9.

Similar presentations


Presentation on theme: "PVE for MRI Brain Tissue Classification Zeng Dong SLST, UESTC 6-9."— Presentation transcript:

1 PVE for MRI Brain Tissue Classification Zeng Dong SLST, UESTC 6-9

2 PVE Partial Volume Effect

3 Contents Overview Method Nei. PVE Model MAP Result Discussion Conclusion

4 Overview 1-role Roles of Segmentation in qualitative in visualization

5 Overview 2 – difficulty difficulty inhomogeneous PVE hard soft segmentation Statistic MAP MRF

6 Overview 3 - PVE IEE95 NOISE MODELS based Sampling noise Material-dependent Noise PVE direct indirect

7 Direct Determine PVC directly IEEE91 multichannel

8 continuous IEE03 Only tow types

9 continuous 02 Fuzzy Markov discrete PVC

10 Indirect PV class Determine PVC based on PV voxels

11 continuous More Tow Not Multi-channal Discrete PVC Boundary voxels More accurate, more efficient

12 Method-Nei. PVE N: numbers of pixels Assume: mask

13 continuous K: numbers of pure g(.,.): Gaussian function

14 continue Observed is mixed with its nei.s meanly during sampling Nei. Size M

15 continue

16 continue L kinds of mixed types: Mixed set Assume A mixed type

17 continue

18 PVE Segmentation MAP Y: observed images X: segmentation images

19 Likelihood term Assume that the intensity at voxel i does not depend on the tissue content of the other voxels.

20 Prior Assume X is MRF on nei. System C, and x is a realization RF X Z: Partition function U(x): Potential energy function

21 continue

22 continue

23 continue

24 ICM Iterative Constrained Mode local combination

25 continue

26 continue

27 continue 1. Init X (beta = 0, M=1) 2. Update mixel mean and variance 3. ICM 4. goto 2

28 Result Brain tissue classification K=3: CSF, GM, WM N=1,3,7,27

29 continue Generate Mixed types: for CSF=M:0 for GM=(M-CSF):0 { WM=M-CSF-GM … }

30 continue Example(K=3,M=7) Reduce: Not tow maximization( 3) CSF !=0 && GM != 0 (18) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CSF 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 GM 0 1 0 2 1 0 3 1 2 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 WM0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

31 continue Ori seg Ori Seg with b Seg without b

32 continue compare 数据 100_23 1_24 11_3 110_3 111_2 112_2 12_3 13_3 15_3* 17_3* CSF 0.3018 0.1089 0.1159 0.3101 0.3418 0.3072 0.1182 0.3097 GM 0.8880 0.8460 0.8781 0.8221 0.8195 0.8056 0.9035 0.9022 WM 0.8339 0.8170 0.8356 0.7757 0.7956 0.7649 0.8583 0.8529 数据 17_3 191_3 202_3 205_3 CSF 0.1031 0.1296 0.0891 GM 0.642 0.8541 0.8924 0.8781 WM 0.782 0.8263 0.8403 0.8433 Mean: csf 20% GM 86% WM :83%

33 Discussion 4-1 Mixel of CSF and WM 0:76.614136 297.295471 1:84.838821 316.580113 2:93.063507 335.864755 3:117.737564 393.718680 4:125.962250 413.003322 5:134.186935 432.287964 6:139.243421 377.461605 7:144.299907 322.635246 8:159.469365 158.156170 9:164.525851 103.329811 10:169.582336 48.503452 mix mean and var 0:76.614136 297.295471 1:84.838821 316.580113 2:89.895307 261.753754 3:93.063507 335.864755 4:98.119993 281.038396 5:103.176479 226.212037 6:106.344679 300.323038 7:111.401164 245.496679 8:117.737564 393.718680 9:122.794050 338.892321 10:137.963508 174.413245 11:143.019993 119.586886 12:125.962250 413.003322 13:131.018736 358.176963 14:136.075221 303.350604 15:146.188193 193.697887 16:151.244679 138.871528 17:156.301165 84.045169 18:134.186935 432.287964 19:139.243421 377.461605 20:144.299907 322.635246 21:159.469365 158.156170 22:164.525851 103.329811 23:169.582336 48.503452

34 continous Mixel of CSF and WM

35 Discussion 4-2 Measure Parameter estimation csf mean : 89.168350 csf var : 836.750610 gm mean : 124.758827 gm var : 385.225983 wm mean : 162.237137 wm var : 186.776108 csf mean : 111.797281 csf var : 273.691200 gm mean : 124.073118 gm var : 359.172593 wm mean : 159.252710 wm var : 212.954779 Result para:Ori para Csf mean:76.614136 Csf var:297.295471 gm mean:134.186935 gm var:432.287964 wm mean:169.582336 wm var:48.503452 Init para(ML)

36 Discussion 4-3 Prior Parameter estimation

37 Discussion 4-4 Intensity inhomogeneous

38 Conclusion More accurate, more efficient Unify framework generalization

39 Thanks


Download ppt "PVE for MRI Brain Tissue Classification Zeng Dong SLST, UESTC 6-9."

Similar presentations


Ads by Google