Download presentation
Presentation is loading. Please wait.
Published byStella McCoy Modified over 9 years ago
1
PVE for MRI Brain Tissue Classification Zeng Dong SLST, UESTC 6-9
2
PVE Partial Volume Effect
3
Contents Overview Method Nei. PVE Model MAP Result Discussion Conclusion
4
Overview 1-role Roles of Segmentation in qualitative in visualization
5
Overview 2 – difficulty difficulty inhomogeneous PVE hard soft segmentation Statistic MAP MRF
6
Overview 3 - PVE IEE95 NOISE MODELS based Sampling noise Material-dependent Noise PVE direct indirect
7
Direct Determine PVC directly IEEE91 multichannel
8
continuous IEE03 Only tow types
9
continuous 02 Fuzzy Markov discrete PVC
10
Indirect PV class Determine PVC based on PV voxels
11
continuous More Tow Not Multi-channal Discrete PVC Boundary voxels More accurate, more efficient
12
Method-Nei. PVE N: numbers of pixels Assume: mask
13
continuous K: numbers of pure g(.,.): Gaussian function
14
continue Observed is mixed with its nei.s meanly during sampling Nei. Size M
15
continue
16
continue L kinds of mixed types: Mixed set Assume A mixed type
17
continue
18
PVE Segmentation MAP Y: observed images X: segmentation images
19
Likelihood term Assume that the intensity at voxel i does not depend on the tissue content of the other voxels.
20
Prior Assume X is MRF on nei. System C, and x is a realization RF X Z: Partition function U(x): Potential energy function
21
continue
22
continue
23
continue
24
ICM Iterative Constrained Mode local combination
25
continue
26
continue
27
continue 1. Init X (beta = 0, M=1) 2. Update mixel mean and variance 3. ICM 4. goto 2
28
Result Brain tissue classification K=3: CSF, GM, WM N=1,3,7,27
29
continue Generate Mixed types: for CSF=M:0 for GM=(M-CSF):0 { WM=M-CSF-GM … }
30
continue Example(K=3,M=7) Reduce: Not tow maximization( 3) CSF !=0 && GM != 0 (18) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CSF 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 GM 0 1 0 2 1 0 3 1 2 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 WM0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
31
continue Ori seg Ori Seg with b Seg without b
32
continue compare 数据 100_23 1_24 11_3 110_3 111_2 112_2 12_3 13_3 15_3* 17_3* CSF 0.3018 0.1089 0.1159 0.3101 0.3418 0.3072 0.1182 0.3097 GM 0.8880 0.8460 0.8781 0.8221 0.8195 0.8056 0.9035 0.9022 WM 0.8339 0.8170 0.8356 0.7757 0.7956 0.7649 0.8583 0.8529 数据 17_3 191_3 202_3 205_3 CSF 0.1031 0.1296 0.0891 GM 0.642 0.8541 0.8924 0.8781 WM 0.782 0.8263 0.8403 0.8433 Mean: csf 20% GM 86% WM :83%
33
Discussion 4-1 Mixel of CSF and WM 0:76.614136 297.295471 1:84.838821 316.580113 2:93.063507 335.864755 3:117.737564 393.718680 4:125.962250 413.003322 5:134.186935 432.287964 6:139.243421 377.461605 7:144.299907 322.635246 8:159.469365 158.156170 9:164.525851 103.329811 10:169.582336 48.503452 mix mean and var 0:76.614136 297.295471 1:84.838821 316.580113 2:89.895307 261.753754 3:93.063507 335.864755 4:98.119993 281.038396 5:103.176479 226.212037 6:106.344679 300.323038 7:111.401164 245.496679 8:117.737564 393.718680 9:122.794050 338.892321 10:137.963508 174.413245 11:143.019993 119.586886 12:125.962250 413.003322 13:131.018736 358.176963 14:136.075221 303.350604 15:146.188193 193.697887 16:151.244679 138.871528 17:156.301165 84.045169 18:134.186935 432.287964 19:139.243421 377.461605 20:144.299907 322.635246 21:159.469365 158.156170 22:164.525851 103.329811 23:169.582336 48.503452
34
continous Mixel of CSF and WM
35
Discussion 4-2 Measure Parameter estimation csf mean : 89.168350 csf var : 836.750610 gm mean : 124.758827 gm var : 385.225983 wm mean : 162.237137 wm var : 186.776108 csf mean : 111.797281 csf var : 273.691200 gm mean : 124.073118 gm var : 359.172593 wm mean : 159.252710 wm var : 212.954779 Result para:Ori para Csf mean:76.614136 Csf var:297.295471 gm mean:134.186935 gm var:432.287964 wm mean:169.582336 wm var:48.503452 Init para(ML)
36
Discussion 4-3 Prior Parameter estimation
37
Discussion 4-4 Intensity inhomogeneous
38
Conclusion More accurate, more efficient Unify framework generalization
39
Thanks
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.