Download presentation
Presentation is loading. Please wait.
Published byFrederica Baldwin Modified over 9 years ago
1
Spatial Databases: Building Spatial DB Spring, 2015 Ki-Joune Li
2
STEMPNU 2 Importance of Database Application of Spatial Databases (e.g. GIS) Garbage-In Garbage-Out About 70% of GIS Development Cost: DB Cost
3
STEMPNU 3 Comparison with Software Lifecycle Requirement Analysis Functional Specification Design Development Environments Coding Test Maintenance Software Life Cycle – Waterfall Model Requirement Analysis Modeling Schema Design DB Environments Data Collection and Input Quality Control Maintenance DB Life Cycle
4
STEMPNU 4 Requirement Analysis Analysis of Status as it is and as it shall be. Output of Analysis Use-Case Diagram of UML: Workflow Analysis Data items that have been maintained and to be maintained Description of each item: Data Dictionary Relationships and Constraints on items Required accuracy Spatial Precision Temporal Precision Current State: As it isAs it must be
5
STEMPNU 5 Data Dictionary Definitions and Representation of Data Items such as Precise definition of data elements Integrity constraints or Constrains Stored procedures and trigger rules Specification of Producer and Consumer of data element Why it is so important? Common understanding on data items Consistency of databases Important input to data modeling
6
STEMPNU 6 Data Modeling Understanding the real world and application A very small piece of the real world According to viewpoint Determined by applications Drawing what you have understood in formal method Class Diagram in UML 4 steps Definition of Entities Attributes of each Entity Relationships Constraints
7
STEMPNU 7 Class Diagram: Basic DVD MovieVHS MovieVideo Game Rental Item {abstract} Rental Invoice 1..* 1 Customer Checkout Screen 0..1 1 Simple Association Class Abstract Class Simple Aggregation Generalization Composition (Dependency) Multiplicity MyClassName +SomePublicAttribute : SomeType -SomePrivateAttribute : SomeType #SomeProtectedAttribute : SomeType +ClassMethodOne() +ClassMethodTwo() Responsibilities -- can optionally be described here.
8
STEMPNU 8 Extract nouns from Problem statement Use-Case Diagram Delete unnecessary entities Duplication Attributes rather than entity ex. Loan amount Definition of Features Geographic Entity Granularity Definition of Entities MyClassName
9
STEMPNU 9 Definition of Features Feature Meaningful Object of GIS in real world Must have a geometry Point, Line, Polygon, etc.. How to define the Granularity of Features Example How to define “a” coastal line? The highway from Pusan to Seoul is a long feature ? How to separate this long road?
10
STEMPNU 10 Definition of Attributes Attributes of Feature Geometric type: Spatial Attribute Non-Spatial Attributes Geometric Type Different Levels of Detail (LOD) Building Polygon in 1/1,000 scale Point in 1/1,000,000 scale Road Polygon in 1/1,000 scale Polyline in 1/1,000,000 scale MyClassName +SomePublicAttribute : SomeType -SomePrivateAttribute : SomeType #SomeProtectedAttribute : SomeType +GeometricAttribute
11
STEMPNU 11 Relationship Non-Spatial Relationship Spatial Relationship: Topology
12
STEMPNU 12 Constraints Example No building on road surface More than 50 meters between two poles Implementation Internal Functions for checking constraints (or constructor) Spatial OCL (Object Constraint Language) More detail and complete constraint Better quality of DB
13
STEMPNU 13 Quality Control for Data Modeling For the quality control, A Simulation with a pre-defined test scenario
14
STEMPNU 14 Schema Design Automatic Conversion from Data Modeling to Schema Check Points: Performance Issues Materialization Index Geographic Distribution of DB: Clustering Based on Workload Analysis Distribution of operations Distribution of values
15
STEMPNU 15 Materialization In SQL, view is a virtual table derived from a Select statement Eample CREATE VIEW ExcellentStudents AS SELECT Name, Department, Score FROM Students WHERE Score > 4.0 SELCT Name FROM ExcellentStudents Where Department=‘CS’ Invoke ExcellentStudents Materialization
16
STEMPNU 16 Materialize or Not ? Materialization Duplication Not 3NF (BCNF) Cause an inconsistency between the original and derived tables Update: Overhead due to update propagation Extra Space Requirements Should be determined depending on the WORKLOAD Frequency of updates Cost for update propagation Especially when materialized view is geographically distributed
17
STEMPNU 17 Spatial Index Index: Accelerate Search Spatial Index Spatial predicates: contain, overlapping, k-NN Much improves the query processing performance Has a performance overhead for insertion/deletion Search Condition { Block# } Search Block Number Database on Disk 1 st Phase 2 nd Phase
18
STEMPNU 18 Clustering: Placement of records Vertical Fragmentation vs. Horizontal Fragmentation Vertical Fragmentation: Decomposition of table Horizontal Fragmentation: Placement of objects Consideration on Workload Vertical FragmentationHorizontal Fragmentation
19
STEMPNU 19 Clustering Clustering: Grouping objects so as to maximize Prob(a C, b C), when O K =a and O K+1 =b for any two objects a and b of the same group C. Spatial Clustering Basic Assumption: If dist(a,b) Prob(O K =a, O K+1 =c) Two consecutive accesses a b c
20
STEMPNU 20 Spatial Clustering Methods k-Means CLARANS in IEEE TKDE 2002, 14(5) BIRCH in proc. VLDB 1996 DBSCAN in proc. KDD 1996 SMTIN in proc. ACM-GIS 1997
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.