Download presentation
Presentation is loading. Please wait.
Published byHarvey Turner Modified over 9 years ago
1
Whole Number Arithmetic Rounding and estimating
2
Round to the nearest whole number 621.8 19.02 57.04 98.63 1.03 610.8 519.6 622 19 57 99 1 611 520
3
Round to one decimal place 19.023 57.046 81.774 89.522 1.03 2.59 49.97 19.0 57.0 81.8 89.5 1.0 2.6 50.0
4
Round to two decimal places 1.902 5.704 0.1036 2.974 0.006 3.899 0.003 1.90 5.70 0.10 2.97 0.01 3.90 0.00
5
The reading 4.1 kg, has two significant figures.
6
The width of the footpath is 1.81m (to the nearest cm)
7
How many significant figures?
8
Complete this table Rounded widthSignificant Figures 1.81 2 1
9
Complete this table Rounded widthSignificant Figures 1.813 1.82 21
10
Round to one significant figure 7.56 2.7 4.6 10.6 8 3 5 10
11
How many significant figures? 9.6 2.5 55.1 1.26 22.4 178.3 8.75 3.24 2 2 3 3 3 4 3 3
12
How many significant figures? 46.81 3.808 4.077 71.08 83.881 778.049 4 4 4 4 5 6
13
How many significant figures? 400.00 40.0 1.4 1.40 1.400 10.0 1.50 100.00 5 3 2 3 4 3 3 5
14
The length of this pencil is 83 mm to the nearest mm. 83 mm has been rounded to two significant figures. 83 mm = 0.083 m 0.083 m also has two significant figures.
15
How many significant figures? 0.061 0.007 0.00061 0.46 0.070 0.0700 0.0074 0.07006 2 1 2 2 2 3 2 4
16
Exercise 9 Rounding
17
Round the lengths of N. Z. Rivers to the nearest 10 Km. Waikato Clutha Wanganui Taieri Rangitiki Waitaki 425 322 290 288 241 209
18
Round the lengths of N. Z. Rivers to the nearest 10 Km. Waikato Clutha Wanganui Taieri Rangitiki Waitaki 425 = 430 322 = 320 290 = 290 288 = 290 241 = 240 209 = 210
19
Round the heights of N. Z. Mountains to the nearest 100 m. Cook Tasman Ruapehu Taranaki Ngauruhoe Tongariro 3764 3498 2797 2518 2291 1968
20
Round the heights of N. Z. Mountains to the nearest 100 m. Cook Tasman Ruapehu Taranaki Ngauruhoe Tongariro 3764 = 3800 3498 = 3500 2797 = 2800 2518 = 2500 2291 = 2300 1968 = 2000
21
Round the areas of N. Z. Lakes to the nearest 1000 ha. Taupo Te Anau Wakatipu Wanaka Manapouri Hawea 60 606 34 447 29 267 19 166 14 245 11 914
22
Round the areas of N. Z. Lakes to the nearest 1000 ha. Taupo Te Anau Wakatipu Wanaka Manapouri Hawea 60 606 = 61 000 34 447 = 34 000 29 267 = 29 000 19 166 = 19 000 14 245 = 14 000 11 914 = 12 000
23
Round the areas of N. Z. Regions correct to 2 significant figures. Northland Auckland Waikato Bay of Plenty Gisborne Hawkes' Bay Taranaki Manawatu - Wanganui Wellington 13 941 5 600 25 598 12 447 8 351 14 164 7 273 22 215 8 124
24
Round the areas of N. Z. Regions correct to 2 significant figures. Northland Auckland Waikato Bay of Plenty Gisborne Hawkes' Bay Taranaki Manawatu - Wanganui Wellington 13 941 = 14 000 5 600 = 5 600 25 598 = 26 000 12 447 = 12 000 8 351 = 8 400 14 164 = 14 000 7 273 = 7 300 22 215 = 22 000 8 124 = 8 100
25
Round the population of N. Z. Regions correct to 3 significant figures. Nelson Tasman Marlborough West Coast Canterbury Otago Southland New Zealand 40 279 37 973 38 397 32 512 468 040 185 083 97 100 3 618 302
26
Round the population of N. Z. Regions correct to 3 significant figures. Nelson Tasman Marlborough West Coast Canterbury Otago Southland New Zealand 40 279 = 40 300 37 973 = 38 000 38 397 = 38 400 32 512 = 32 500 468 040 = 468 000 185 083 = 185 000 97 100 = 97 100 3 618 302 = 3 620 000
27
This table shows the population of Auckland's 4 cities rounded to the nearest 1000. Copy down and complete the table. CityPopulationMin. PopMax. Pop North Shore172 000 171 500172 499 Waitakere 156 000 Auckland 346 000 Manukau254 000
28
This table shows the population of Auckland's 4 cities rounded to the nearest 1000. Copy down and complete the table. CityPopulationMin. PopMax. Pop North Shore172 000 171 500172 499 Waitakere 156 000155 500156 499 Auckland 346 000345 500346 499 Manukau254 000253 500254 499
29
Exercise 10 Approximate Calculations
30
Oral examples - 1 a. 90 x 6 b. 90 x 60 c. 900 x 60 d. 900 x 600 540 5400 54 000 540 000
31
Oral examples - 2 a. 80 x 5 b. 80 x 50 c. 800 x 50 d. 800 x 500 400 4000 40 000 400 000
32
Oral examples - 3 = 50
33
Oral examples - 3 = 50
34
Oral examples - 3 = 500
35
Oral examples - 3 = 500
36
Oral examples - 4 = 200
37
Oral examples - 4 = 200
38
Oral examples - 4 = 2000
39
Oral examples - 4 = 2000
40
Written examples 1.80 x 7 2. 80 x 70 3. 800 x 70 4. 800 x700 560 5600 56 000 560 000
41
Written examples 5. 40 x 5 6. 40 x 50 7. 400 x 50 8. 400 x 500 200 2000 20 000 200 000
42
9. = 50
43
10. = 50
44
11. = 500
45
12. = 500
46
13. = 200
47
14. = 20
48
15. = 2000
49
16. = 2000
50
Estimation Answers are not exact
51
Exercise 10 17. 91 x 18 18. 82 x 29 19. 73 x 36 20. 64 x 47 21. 621 x 19 22. 685 x 32 23. 817 x 38 24. 893 x 51 90 x 20 ≈ 1800 80 x 30 ≈ 2400 70 x 40 ≈ 2800 60 x 50 ≈ 3000 600 x 20 ≈ 12000 600 x 30 ≈ 18000 800 x 40 ≈ 32000 900 x 50 ≈ 45000
52
25. ≈ 5
53
26. ≈ 2
54
27. ≈ 4
55
28. ≈ 3
56
29. ≈ 40
57
30. ≈ 30
58
31. ≈ 20
59
32. ≈ 50
60
33. ≈ 400
61
34. ≈ 2500
62
35. ≈ 90 000
63
36. ≈ 160 000
64
37. ≈ 10
65
38. ≈ 20
66
39. ≈ 30
67
40. ≈ 100
68
41. ≈ 40
69
42. ≈ 20
70
43. ≈ 60
71
44. ≈ 30
72
45. ≈ 2
73
46. ≈ 4
74
47. ≈ 6
75
48. ≈ 3
76
49. ≈ 8 000
77
50. ≈ 27 000
78
51. ≈ 160 000
79
52. ≈ 810 000
80
53. The sun is 150 million kilometres from the earth. Light travels a distance of 300 000 kilometres every second. Find, in seconds, how long it takes light from the sun to reach the earth.
81
53. The sun is 150 million kilometres from the earth. Light travels a distance of 300 000 kilometres every second. Find, in seconds, how long it takes light from the sun to reach the earth.
82
54. The earth travels 958 million kilometres in its orbit around the sun each year (365 days). By rounding off each number correct to 1 significant figure calculate how far the earth travels in 1 hour.
83
54. The earth travels 958 million kilometres in its orbit around the sun each year (365 days). By rounding off each number correct to 1 significant figure calculate how far the earth travels in 1 hour.
84
55. Repeat question 54 only use a calculator to do the actual calculation. (Round off your answer correct to 2 significant figures.)
85
55. Repeat question 54 only use a calculator to do the actual calculation. (Round off your answer correct to 2 significant figures.) 110000 km
86
56. Use a calculator to help you find how many days there are in 1 million seconds. (Round off your answer correct to 3 significant figures.)
87
56. Use a calculator to help you find how many days there are in 1 million seconds. (Round off your answer correct to 3 significant figures.) 11.6 days
88
Making Estimates Continued
89
Fill the gaps ItemUnit cost ($) QuantityEstimated cost ($) Apples1.834 Chickens8.959 Calculator16.857 DVD9.9510
90
Fill the gaps ItemUnit cost ($) QuantityEstimated cost ($) Apples1.8348 Chickens8.95981 Calculator16.857140 DVD9.9510100
91
Fill the gaps ItemUnit cost ($) QuantityEstimated cost ($) Hairdryer23.1538 Toaster47.9527 Shorts14.8574 Chairs83.7565
92
Fill the gaps ItemUnit cost ($) QuantityEstimated cost ($) Hairdryer23.1538800 Toaster47.95271500 Shorts14.8574700 Chairs83.75655600
93
Fill the gaps ItemTotal costQuantityEstimated unit cost Shorts64.917 Books47.998 Heaters33859 Fridges67257
94
Fill the gaps ItemTotal costQuantityEstimated unit cost Shorts64.9179 Books47.9986 Heaters33859400 Fridges672571000
95
Fill the gaps ItemTotal costQuantityEstimated unit cost Watches222551 Shoes430978 Calculator268392 Trousers341683
96
Fill the gaps ItemTotal costQuantityEstimated unit cost Watches22255140 Shoes43097850 Calculator26839230 Trousers34168340
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.