Download presentation
Presentation is loading. Please wait.
Published byMarcia Doyle Modified over 9 years ago
1
W. Morse May 15, 20071 Colliding 5nm Beams at the International Linear Collider William Morse Brookhaven National Lab
2
W. Morse May 15, 20072 Outline of the Talk International Linear Collider See: “Physics Opportunities with a TeV Linear Collider”, Sally Dawson and Mark Oreglia, Ann. Rev. Nucl. Part. Sci. 54:269 (2004), “Linear Collider Physics in the New Millennium”, A. Soni et al., World Sci. (2005) Colliding 5nm e + e - beams
3
W. Morse May 15, 20073 High Energy Colliders ColliderParticleE cm (TeV) YearsLum (cm -2 s -1 ) Tevatron (Fermi, US) P-P+P-P+ 2- 200910 32 2 fb -1 /sy LHC (CERN, SW) PP142008 - 6 10 33 120 fb -1 ILC (?)e+e-e+e-.5 - 12019 - 2 10 34 200 fb -1
4
W. Morse May 15, 20074 Recent e + e - Colliders ColliderSLAC B (USA) KEK B (Japan) SLC (USA) LEP 1-2 (CERN) E cm (TeV) 0.01 0.1 polarized 0.1-0.2 Years- 2008- ?- 1998- 2000
5
W. Morse May 15, 20075 PDG: Z precision comes from SLC/ LEP
6
W. Morse May 15, 20076 Exploring the TeraVolt Scale Protons are made up of quarks and gluons Average quark or gluon carries 10% of the proton’s energy LHC: 1B uninteresting events/s, ie. need a trigger e+e- converts all the beam energy into the collision energy ILC: No uninteresting events/s, ie. no trigger! Polarized electron positron beams ILC dL/L 3 10 -4 LHC dL/L 0.1
7
W. Morse May 15, 20077 JoAnne Hewett’s Slide Common feature of many models is a contact interaction type signature new gauge bosons, large extra dimensions, compositeness, leptoquarks, string excitations, …. -
8
W. Morse May 15, 20078
9
9 International Linear Collider International from the start! New paradigm for HEP Global Design Effort of Asia, Europe, America 2007 Reference Design Report – done! 2009 Engineering Design Report 2010 Tevatron/LHC Higgs physics results, ILC site selection, International funding agreement ? 2011-2018 Construction?? 2019 First Run ???
10
W. Morse May 15, 200710
11
W. Morse May 15, 200711
12
W. Morse May 15, 200712
13
W. Morse May 15, 200713 Physics - Higgs Mechanism Proposed by Peter Higgs almost fifty years ago Spontaneous symmetry breaking to give particles mass LEP direct search limit: M H >0.115TeV Precision Electro-Weak Measurements at Tevatron /LEP/SLC: M H < 0.2 TeV from virtual processes Does nature give mass through Peter Higg’s mechanism? Only fundamental particle in the standard model with spin zero! Only particle in the standard model where the coupling constant is proportional to mass.
14
W. Morse May 15, 200714 LHC2ILC Fermilab Apr 12-14 Reconstruct Higgs mass with collinear approximation 30 fb -1 H( ll) + 2jets (VBF) H( lh) + 2jets (VBF)
15
W. Morse May 15, 200715 ILC with no trigger
16
W. Morse May 15, 200716
17
W. Morse May 15, 200717 ILC can vary beam energy
18
W. Morse May 15, 200718
19
W. Morse May 15, 200719 Hints of SUSY? BNL measurement of the anomalous magnetic moment of the muon (2004): a exp = 0.0011659208 (6) a SM = 0.0011659179 (6) SUSY theorists relieved! a susy tan /M 2 0.13TeV < M susy < 0.47TeV J. Miller, E. De Rafael, B. Roberts, hep-ph 0703049 (2007) Review Article.
20
W. Morse May 15, 200720 D0 Z+H bb Search
21
W. Morse May 15, 200721 Nominal ILC Parameters ParameterILC (0.5TeV)SLC (0.09TeV) Luminosity 2 10 34 cm -2 s -1 2 10 30 cm -2 s -1 BX/s15K.12K yy 5nm500nm xx 1500nm e/BX 2 10 10 4 10 10
22
W. Morse May 15, 200722 Feedback SLC found they needed feedback to optimize the luminosity with 1 m beams – mainly beam position monitors (BPM). What detectors do we need to stabilize the beams at the 5nm level to achieve the design luminosity? 100V kicker.
23
W. Morse May 15, 200723 BNL Magnet Division Position Stability
24
W. Morse May 15, 200724 Achieving the ILC Luminosity Will Be a Challenge Bunch P - (t) {N, E, x, y, z, x, y, z, xy, x, y } Bunch P + (t) {N, E, x, y, z, x, y, z, xy, x, y } Beam motion >> 5nm! Instantaneous Luminosity: x y
25
W. Morse May 15, 200725 Beam-strahlung Gammas F = e(E + c B) E = 0, B max 1KT P 3% P e 0.4MW N 1.5N e 3 10 10 /BX
26
W. Morse May 15, 200726 Beam-strahlung Pairs Bethe-Heitler: e → e e + e - BH 38 mb 1GeV Landau-Lifshitz: ee → ee e + e - LL 19 mb 0.15GeV Breit-Wheeler: e + e - BW 1 mb 10 4 e + e - /BX Maximum P T = 0.1 GeV/c
27
W. Morse May 15, 200727 Beam-strahlung Pairs
28
W. Morse May 15, 200728 Bethe-Heitler Pairs e → e e + e - For left and right detectors separately: N + / x y and N - / x y.
29
W. Morse May 15, 200729 Vertical offset E BeamCal (TeV)
30
W. Morse May 15, 200730 Vertical Offset R (10 -6 )
31
W. Morse May 15, 200731 Bunch Height
32
W. Morse May 15, 200732 Bunch Length
33
W. Morse May 15, 200733 Forward Calorimeters LumiCal – forward Bhabhas for precision integrated luminosity measurement BeamCal – beam-strahlung pairs for instantaneous luminosity GamCal - beam-strahlung gammas for instantaneous luminosity
34
W. Morse May 15, 200734 International FCAL R&D Coll. W. Lohmann (DESY Zeuthen) spokesman W. Morse (BNL) beam diagnostics (BeamCal/GamCal) coordinator B. Pawlik (Cracow) simulations coordinator W. Lange (DESY) sensors coordinator TBD electronics coordinator W. Wierba (Cracow) LumiCal laser alignment coordinator
35
W. Morse May 15, 200735 U.S. Forward (SiD) W. Morse (BNL): Coordinator G. Haller, A. Abusleme, M. Breidenbach, D. Freytag (SLAC): BeamCal readout design Z. Li (BNL): BeamCal radiation damage issues B. Parker (BNL): machine interface issues M. Zeller, G. Atoian, V. Issakov, A. Poblaguev (Yale): GamCal design Y. Nosochkov (SLAC): Extraction line issues U. Nauenberg (Colorado): SUSY studies
36
W. Morse May 15, 200736 BeamCal.003 < <.02 rad 3.5m from IR Measure the 10 4 beam-strahlung e + e - pairs/BX for beam diagnostics 2-10MGy/year Beam diagnostics and hermeticity for SUSY searches.
37
W. Morse May 15, 200737 Collaboration High precision design DESY-PRC2006
38
W. Morse May 15, 200738 GamCal Detector 180m from IR 10 -4 X 0 to convert beam-strahlung gammas into e + e - pairs Converter could be gas jet or a thin solid converter Magnet to separate pairs from beam electrons! 3 10 10 beamstrahlung gammas ( 2 GeV) 2 10 10 beam electrons ( 0.2 TeV) Evaluate the effect of beam electrons going through conveter
39
W. Morse May 15, 200739 Beam-strahlung Z eeZ
40
W. Morse May 15, 200740 GamCal Backgrounds
41
W. Morse May 15, 200741 Z eeZ vs. eZ eZee Electron carries virtual gammas Landau Lifshitz conversion of virtual gammas
42
W. Morse May 15, 200742 Ratio of Z eeZ vs. eZ eZee
43
W. Morse May 15, 200743 Production Compared to ee p eep 10 mb p N 0.5 mb in Δ resonance region p N 0.1 mb E > 4GeV ep e N 10 -3 mb Thus ep e N is negligible
44
W. Morse May 15, 200744
45
W. Morse May 15, 200745 Yale IBS Design
46
W. Morse May 15, 200746 Feed-back with Luminosity Detectors
47
W. Morse May 15, 200747 Conclusions We have designs for beam-strahlung pair and gamma detectors. Studies, simulations continuing. Ratio of the beamstrahlung pairs (BeamCal) to gammas (GamCal) is largely proportional to the instantaneous luminosity. Use feedback to bring 5nm beams into collision at maximum luminosity
48
W. Morse May 15, 200748 Extra Slides
49
W. Morse May 15, 200749 ILC Timeline Reference Design 2007 Engineering Design 2009 Site selection, LHC Physics results, International Funding Agreement 2010 Construction Starts 2011 Construction Ends 2018 First Run 2019
50
W. Morse May 15, 200750 1 21 2 + - y z
51
W. Morse May 15, 200751 Perfect Collisions
52
W. Morse May 15, 200752
53
W. Morse May 15, 200753
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.