Download presentation
Presentation is loading. Please wait.
Published byKarin Kennedy Modified over 9 years ago
1
Ionized Neutral Reionized Update: HI 21cm cosmic reionization experiments Chris Carilli (NRAO) MPIA July 2008 Last phase of cosmic evolution to be explored Bench-mark in cosmic structure formation indicating the first luminous structures GP + CMBpol => z ~ 7 to 11
2
HI 21cm Tomography of IGM: freq ~ 100 to 200 MHz z=12 9 7.6 Large scale structure: f(HI), Temp (K, CMB, Spin) Advantages: 3D, optically thin, dominant baryon component Tomography requires SKA T B (2’) = 10’s mK SKA rms(100hr) = 4mK LOFAR rms (1000hr) = 80mK Furlanetto, Zaldarriaga + 2004 0.5Mpc
3
Global (‘all sky’) reionization signature Signal ~ 20mK < 1e-4 sky Possible higher z absorption signal via Lya coupling of T s -- T K due to first luminous objects Feedback in Galaxy formation No Feedback Furlanetto, Oh, Briggs 06
4
21cm forest Radio GP Absorption QSO Cosmic Stromgren Spheres 5Mpc LOFAR SKA Power spectra: 3D, 1dex in k Signal ~ 0.5mJy rms(MWA) ~ 0.1mJy 10%
5
Pathfinders: 1% to 10% SKA MWA (MIT/CfA/ANU) 32 Tile array deployment in WA 2009 21CMA (China): 10,000 Dipole array working in Western China 2008 SiteTypeFreq MHzArea m 2 GoalDate GMRTIndiaParabola150-1654e4CSS2009 21CMAChinaDipole70-2001e5PS2008 PAPERGB/Oz/SA?Dipole110-2005e3PS/CSS2009 MWAdemoOzAperture array 80-3001e4PS/CSS2009 LOFARNLAperture array 115-2401e5PS/CSS2010
6
Challenge: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T ~ 100 z)^-2.6 K Highly ‘confused’: 1 source/deg^2 with S 140 > 1 Jy Synch. smooth ~ 100MHz vs. 21cm lines ~ 1 MHz 0.5 to 5.0 GHz
7
Frequency differencing with MHz channels doesn’t work well for far-out sidelobes due to chromatic aberration. Require < 0.2% calibration errors each day to reach thermal noise 1MHz separation R phys ~ 1.7Mpc 5MHz separation 10 o Datta+ 09 0.1%1%
8
Challenge: Interference 100 MHz z=13 200 MHz z=6 Solutions -- RFI Mitigation (Ellingson06) Digital filtering Beam nulling Real-time ‘reference beam’ LOCATION! Aircraft Orbcom TV
9
VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations $110K D+D/construction (CfA) First light: Feb 16, 05 Four element interferometry: May 05 Detect CSS by Winter 06/07
10
Project abandoned: Digital TV KNMD Ch 9 150W at 100km
11
RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2 Chippendale & Beresford 2007
12
Precisions Array to Probe the Epoch of Reionization (PAPER) PI Backer, Bradley Western Australian deployment in 2008 Optimize for reionization PS/CSS FoV ~ 30deg, short baselines < 0.6km Staged engineering: GB06 8 stations WA09 32 stations
13
PAPER: Staged Engineering Broad band sleeve dipole + flaps FPGA-based ‘pocket correlator’ from Berkeley wireless lab S/W Imaging, calibration, PS analysis: AIPY + Miriad/AIPS => Python + CASA, including ionospheric ‘peeling’ calibration 100MHz200MHz BEE2: 5 FPGAs, 500 Gops/s Beam response
14
CygA 1e4Jy PAPER/WA -- 4 Ant, July 2007 RMS ~ 1Jy; DNR ~ 1e4 Parsons et al. 2009 120MHz180MHz
15
Destination: Moon! RAE2 1973 No interference No ionosphere Only place to study ‘dark ages’ Recognized as top astronomy priority for NASA initiative to return Man to Moon (Livio 2007) NASA concept study: DALI/LAMA (NRL + MIT + NRAO…) 10MHz
16
J. Burns PI Colorado
17
TIDs – ‘fuzz-out’ sources ‘Isoplanatic patch’ = few deg = few km Phase variation proportional to ^2 Solution: Reionization requires only short baselines (< 1km) Wide field ‘rubber screen’ phase self-calibration Challenge II: Ionospheric phase errors – varying e- content Virgo A VLA 74 MHz Lane + 02 15’
18
Say, its only a PAPER moon Sailing over a cardboard sea But it wouldn't be make-believe If you believed in me
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.