Download presentation
Presentation is loading. Please wait.
Published byRodney Walters Modified over 9 years ago
1
Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core
2
Today 6T SRAM review 5T SRAM –Charge sharing –Precharge DRAM Leakage Multiport SRAM (time permitting) Penn ESE370 Fall2011 -- DeHon 2
3
Memory Bank Penn ESE370 Fall2011 -- DeHon 3
4
4 SRAM Memory bit
5
Memory Bank Penn ESE370 Fall2011 -- DeHon 5
6
5T SRAM Penn ESE370 Fall2011 -- DeHon 6
7
Consider What happens to voltage at A when WL turns from 0 1? –Assume W access large –W access >> W pu =1 –BL initially 0 –A initially 1 Penn ESE370 Fall2011 -- DeHon 7
8
Voltage After enable Word Line Q BL = 0 Q A = (1V)( (2+W access )C 0 ) C BL >>C A =( (2+W access )C 0 ) After enable W access (W access large) –Total charge Q BL +Q A roughly unchanged –Distributed over larger capacitance~=C BL –V A =V BL ~= C A /C BL Penn ESE370 Fall2011 -- DeHon 8
9
Larger Resistance? What happens if W access small? –W access < W pu Penn ESE370 Fall2011 -- DeHon 9
10
Larger Resistance? What happens if W access small? –W access < W pu Takes time to move charge from A to BL Moves more slowly than replished by pu Penn ESE370 Fall2011 -- DeHon 10
11
Simulation: W access =100 Penn ESE370 Fall2011 -- DeHon 11
12
Simulation Penn ESE370 Fall2011 -- DeHon 12
13
Charge Sharing Conclude: charge sharing can pull down voltage Penn ESE370 Fall2011 -- DeHon 13
14
Consider What happens to voltage at A when WL turns from 0 1? –Assume W access large Penn ESE370 Fall2011 -- DeHon 14
15
Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 15
16
Simulation W access =4 Penn ESE370 Fall2011 -- DeHon 16
17
Charge Sharing Conclude: charge sharing can lead to read upset –Charge redistribution adequate to flip state of bit Penn ESE370 Fall2011 -- DeHon 17
18
How might we avoid? Penn ESE370 Fall2011 -- DeHon 18
19
Charge to middle Voltage Charge bitlines to V dd /2 before begin read operation Now charge sharing doesn’t swing to opposite side of midpoint Penn ESE370 Fall2011 -- DeHon 19
20
Pre-Charge Use one phase of clock to charge a node to some initial value before operation Penn ESE370 Fall2011 -- DeHon 20 Precharge Transistor Can be large
21
Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 21
22
Compare Both W access =20; vary precharge Penn ESE370 Fall2011 -- DeHon 22
23
5T SRAM Questions? Similar charge issues for 6T Precharge is equalizing the bit lines Penn ESE370 Fall2011 -- DeHon 23
24
DRAM Penn ESE370 Fall2011 -- DeHon 24
25
1T 1C DRAM Simplest case – Memory is capacitor –Feature of DRAM process is ability to make large capacitor compactly Penn ESE370 Fall2011 -- DeHon 25
26
1T DRAM What happens when read this cell? Penn ESE370 Fall2011 -- DeHon 26
27
1T DRAM On read, charge sharing –V BL = (C bit /C BL )V store Small swing on bit line –Must be able to detect –Means want large C bit limit bits/bitline so V BL large enough Cell always depleted on read –Must be rewritten Penn ESE370 Fall2011 -- DeHon 27
28
Penn ESE370 Fall2011 -- DeHon 28 Dynamic RAM Takes sharing idea one step further Share refresh/restoration logic as well Only left with access transistor and capacitor
29
3T DRAM Penn ESE370 Fall2011 -- DeHon 29
30
3T DRAM How does this work? –Write? –Read? Penn ESE370 Fall2011 -- DeHon 30
31
3T DRAM Correct operation not sensitive to sizing Does not deplete cell on read No charge sharing with stored state All NMOS (single well) Prechage ReadData Must use V dd +V TN on W to write full voltage Penn ESE370 Fall2011 -- DeHon 31
32
Penn ESE370 Fall2011 -- DeHon 32 Some Numbers (memory) Register as stand-alone element (14T) 4K 2 Static RAM cell (6T) 1K 2 –SRAM Memory (single ported) Dynamic RAM cell (DRAM process) 100 2 Dynamic RAM cell (SRAM process) 300 2
33
Energy Penn ESE370 Fall2011 -- DeHon 33
34
Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long lots of time to leak Penn ESE370 Fall2011 -- DeHon 34
35
ITRS 2009 45nm Penn ESE370 Fall2011 -- DeHon 35 High Performance Low Power I sd,leak 100nA/ m50pA/ m I sd,sat 1200 A/ m560 A/ m C g,total 1fF/ m0.91fF/ m V th 285mV585mV C 0 = 0.045 m × C g,total
36
High Power Process V=1V d=1000 =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2 I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2011 -- DeHon 36
37
Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change? Reduce dynamic energy Increase percentage in leakage energy Reduce crossover frequency Penn ESE370 Fall2011 -- DeHon 37
38
Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2011 -- DeHon 38
39
Multiport RAM Skip to admin Penn ESE370 Fall2011 -- DeHon 39
40
Mulitport Perform multiple operations simultaneously –E.g. Processor register file R3 R1+R2 Requires two reads and one write Penn ESE370 Fall2011 -- DeHon 40
41
Simple Idea Add access transistors to 5T Penn ESE370 Fall2011 -- DeHon 41
42
Watch? What do we need to be careful about? Penn ESE370 Fall2011 -- DeHon 42
43
Adding Write Port Penn ESE370 Fall2011 -- DeHon 43
44
Write Port What options does this raise? Penn ESE370 Fall2011 -- DeHon 44
45
Opportunity Asymmetric cell size Separate sizing constraints –Weak drive into write port (W restore ) –Strong drive into read port (W buf ) Penn ESE370 Fall2011 -- DeHon 45
46
Isolate BL form Mem Penn ESE370 Fall2011 -- DeHon 46 Larger, but more robust Essential for large # of read ports Precharge ReadData High
47
Multiple Write Ports Penn ESE370 Fall2011 -- DeHon 47
48
Admin Get started on Project 2 –Timing constraints for correct operation –Select and size your memory cell Tuesday -- André away—no office hours Lectures Wednesday and Friday as usual –Finish up memories on Wednesday Penn ESE370 Fall2011 -- DeHon 48
49
Idea Memory can be compact Rich design space Demands careful sizing Penn ESE370 Fall2011 -- DeHon 49
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.