Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core."— Presentation transcript:

1 Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core

2 Today 6T SRAM review 5T SRAM –Charge sharing –Precharge DRAM Leakage Multiport SRAM (time permitting) Penn ESE370 Fall2011 -- DeHon 2

3 Memory Bank Penn ESE370 Fall2011 -- DeHon 3

4 4 SRAM Memory bit

5 Memory Bank Penn ESE370 Fall2011 -- DeHon 5

6 5T SRAM Penn ESE370 Fall2011 -- DeHon 6

7 Consider What happens to voltage at A when WL turns from 0  1? –Assume W access large –W access >> W pu =1 –BL initially 0 –A initially 1 Penn ESE370 Fall2011 -- DeHon 7

8 Voltage After enable Word Line Q BL = 0 Q A = (1V)(  (2+W access )C 0 ) C BL >>C A =(  (2+W access )C 0 ) After enable W access (W access large) –Total charge Q BL +Q A roughly unchanged –Distributed over larger capacitance~=C BL –V A =V BL ~= C A /C BL Penn ESE370 Fall2011 -- DeHon 8

9 Larger Resistance? What happens if W access small? –W access < W pu Penn ESE370 Fall2011 -- DeHon 9

10 Larger Resistance? What happens if W access small? –W access < W pu Takes time to move charge from A to BL Moves more slowly than replished by pu Penn ESE370 Fall2011 -- DeHon 10

11 Simulation: W access =100 Penn ESE370 Fall2011 -- DeHon 11

12 Simulation Penn ESE370 Fall2011 -- DeHon 12

13 Charge Sharing Conclude: charge sharing can pull down voltage Penn ESE370 Fall2011 -- DeHon 13

14 Consider What happens to voltage at A when WL turns from 0  1? –Assume W access large Penn ESE370 Fall2011 -- DeHon 14

15 Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 15

16 Simulation W access =4 Penn ESE370 Fall2011 -- DeHon 16

17 Charge Sharing Conclude: charge sharing can lead to read upset –Charge redistribution adequate to flip state of bit Penn ESE370 Fall2011 -- DeHon 17

18 How might we avoid? Penn ESE370 Fall2011 -- DeHon 18

19 Charge to middle Voltage Charge bitlines to V dd /2 before begin read operation Now charge sharing doesn’t swing to opposite side of midpoint Penn ESE370 Fall2011 -- DeHon 19

20 Pre-Charge Use one phase of clock to charge a node to some initial value before operation Penn ESE370 Fall2011 -- DeHon 20 Precharge Transistor Can be large

21 Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 21

22 Compare Both W access =20; vary precharge Penn ESE370 Fall2011 -- DeHon 22

23 5T SRAM Questions? Similar charge issues for 6T Precharge is equalizing the bit lines Penn ESE370 Fall2011 -- DeHon 23

24 DRAM Penn ESE370 Fall2011 -- DeHon 24

25 1T 1C DRAM Simplest case – Memory is capacitor –Feature of DRAM process is ability to make large capacitor compactly Penn ESE370 Fall2011 -- DeHon 25

26 1T DRAM What happens when read this cell? Penn ESE370 Fall2011 -- DeHon 26

27 1T DRAM On read, charge sharing –V BL = (C bit /C BL )V store Small swing on bit line –Must be able to detect –Means want large C bit limit bits/bitline so V BL large enough Cell always depleted on read –Must be rewritten Penn ESE370 Fall2011 -- DeHon 27

28 Penn ESE370 Fall2011 -- DeHon 28 Dynamic RAM Takes sharing idea one step further Share refresh/restoration logic as well Only left with access transistor and capacitor

29 3T DRAM Penn ESE370 Fall2011 -- DeHon 29

30 3T DRAM How does this work? –Write? –Read? Penn ESE370 Fall2011 -- DeHon 30

31 3T DRAM Correct operation not sensitive to sizing Does not deplete cell on read No charge sharing with stored state All NMOS (single well) Prechage ReadData Must use V dd +V TN on W to write full voltage Penn ESE370 Fall2011 -- DeHon 31

32 Penn ESE370 Fall2011 -- DeHon 32 Some Numbers (memory) Register as stand-alone element (14T)  4K 2 Static RAM cell (6T)  1K 2 –SRAM Memory (single ported) Dynamic RAM cell (DRAM process)  100 2 Dynamic RAM cell (SRAM process)  300 2

33 Energy Penn ESE370 Fall2011 -- DeHon 33

34 Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long  lots of time to leak Penn ESE370 Fall2011 -- DeHon 34

35 ITRS 2009 45nm Penn ESE370 Fall2011 -- DeHon 35 High Performance Low Power I sd,leak 100nA/  m50pA/  m I sd,sat 1200  A/  m560  A/  m C g,total 1fF/  m0.91fF/  m V th 285mV585mV C 0 = 0.045  m × C g,total

36 High Power Process V=1V d=1000  =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2  I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2011 -- DeHon 36

37 Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change?  Reduce dynamic energy  Increase percentage in leakage energy  Reduce crossover frequency Penn ESE370 Fall2011 -- DeHon 37

38 Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2011 -- DeHon 38

39 Multiport RAM Skip to admin Penn ESE370 Fall2011 -- DeHon 39

40 Mulitport Perform multiple operations simultaneously –E.g. Processor register file R3  R1+R2 Requires two reads and one write Penn ESE370 Fall2011 -- DeHon 40

41 Simple Idea Add access transistors to 5T Penn ESE370 Fall2011 -- DeHon 41

42 Watch? What do we need to be careful about? Penn ESE370 Fall2011 -- DeHon 42

43 Adding Write Port Penn ESE370 Fall2011 -- DeHon 43

44 Write Port What options does this raise? Penn ESE370 Fall2011 -- DeHon 44

45 Opportunity Asymmetric cell size Separate sizing constraints –Weak drive into write port (W restore ) –Strong drive into read port (W buf ) Penn ESE370 Fall2011 -- DeHon 45

46 Isolate BL form Mem Penn ESE370 Fall2011 -- DeHon 46 Larger, but more robust Essential for large # of read ports Precharge ReadData High

47 Multiple Write Ports Penn ESE370 Fall2011 -- DeHon 47

48 Admin Get started on Project 2 –Timing constraints for correct operation –Select and size your memory cell Tuesday -- André away—no office hours Lectures Wednesday and Friday as usual –Finish up memories on Wednesday Penn ESE370 Fall2011 -- DeHon 48

49 Idea Memory can be compact Rich design space Demands careful sizing Penn ESE370 Fall2011 -- DeHon 49


Download ppt "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core."

Similar presentations


Ads by Google