Presentation is loading. Please wait.

Presentation is loading. Please wait.

Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC.

Similar presentations


Presentation on theme: "Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC."— Presentation transcript:

1 Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC

2 LECC 2003Kurt Hänsler - CERN2 Outline Background Technology presentation Test module Radiation tolerance Bandgap Dual port SRAM Time to digital converter Conclusions

3 LECC 2003Kurt Hänsler - CERN3 Background Can we take profit from this new technology? –Radiation tolerance? –Higher functional density? –Use in high energy physics experiments? –Commercial libraries? –Costs?

4 LECC 2003Kurt Hänsler - CERN4 Technology presentation Technology features 0.13  m generation CMOS technology All copper technology, 4 – 8 metal levels Core supply 1.2V & 1.5V I/O voltages 2.5V & 3.3V Triple gate oxide (1.7nm, 2.2nm, 5.2nm) Non-epi p- substrate Device options Standard, low Vt, high Vt NMOS and PMOS, ZeroVt NMOS Ultra thin gate oxide NMOS and PMOS Thick oxide NMOS, PMOS and ZeroVt NMOS n+ diffusion and p+ polysilicon resistors Metal-insulator-metal precision capacitors

5 LECC 2003Kurt Hänsler - CERN5 Test module 5x5mm module in foundry MPW –Test structures –Basic circuit building blocks: SRAM, TDC, Bandgap, Serializer, Shift Register, AFP Design start Jul-03 Submission Nov-03 Reception Mar-04 Cooperation with RAL and Imperial College London

6 LECC 2003Kurt Hänsler - CERN6 Radiation tolerance: TID, 30 Mrd Linear transistors with 1.7 nm and 2.2 nm physical gate oxide thicknesses present a promising natural TID hardness. No worries for a number of environments. Linear transistors with 5.2nm gate oxide are more sensitive: careful use. Further information: K. Hänsler et al. “TID and SEE performance of a commercial 0.13  m CMOS technology” Proceedings RADECS 2003

7 LECC 2003Kurt Hänsler - CERN7 Radiation tolerance: SEE SEU cross section in order of magnitude of older technologies. Influence of supply voltage and TID on SEU cross section as foreseen and expected in the past. Further information: K. Hänsler et al. “TID and SEE performance of a commercial 0.13  m CMOS technology” Proceedings RADECS 2003

8 LECC 2003Kurt Hänsler - CERN8 Bandgap: Structure New structure required due to low supply voltage. Standard structure based on the sum of the built-in voltage of a diode and of the thermal voltage.

9 LECC 2003Kurt Hänsler - CERN9 Bandgap: Structure

10 LECC 2003Kurt Hänsler - CERN10 Bandgap: Results Reference Voltage: 0.587V Power supply sensitivity: 14mV/V Temperature sensitivity: 0.22mV/K Minimum supply voltage: 1V Current consumption: 310  A @ 1.5V

11 LECC 2003Kurt Hänsler - CERN11 Bandgap: Irradiation Reference voltage before irradiation: 587mV

12 LECC 2003Kurt Hänsler - CERN12 Bandgap: Comparison with 0.25  m 0.13  m0.25  m Die area 46 800  m 2 110 000  m 2 Nominal supply voltage 1.5 V2.5 V Operational supply voltage range 1.0…1.7 V1.4…2.7V Temperature sensibility of reference voltage +0.22 mV/K-0.22 mV/K Nominal reference voltage 0.587 V1.175 V Reference voltage variation over supply voltage range < 10 mV< 1mV

13 LECC 2003Kurt Hänsler - CERN13 SRAM: Structure 1.5 V supply Memory size 256x9 bits Physical size: 553  m X 129  m

14 LECC 2003Kurt Hänsler - CERN14 SRAM: Memory cell  2 cross-coupled inverters  2 enclosed NMOS  2 PMOS  2 PMOS pass transistors  Cell size 3.73  m X 2.58  m

15 LECC 2003Kurt Hänsler - CERN15 SRAM: Results All cells fully functional for supply voltages above 1.6V and frequencies up to 75 MHz. Read operation down to 0.8V Write operation: limited operation range Power consumption –3.84mW @ 25MHz –Increase rate 104  W/MHz in future: no enclosed layout, but EDAC

16 LECC 2003Kurt Hänsler - CERN16 SRAM: Comparison 0.25  m 0.13  m0.25  m Cell size 9.62  m 2  m 2 Nominal supply1.6 V2.5 V Access time5.1 ns4.5 ns Maximum operation frequency 75 MHz70 MHz

17 LECC 2003Kurt Hänsler - CERN17 TDC: Structure

18 LECC 2003Kurt Hänsler - CERN18 TDC: Delay Cell

19 LECC 2003Kurt Hänsler - CERN19 TDC: Results I

20 LECC 2003Kurt Hänsler - CERN20 TDC: Results II

21 LECC 2003Kurt Hänsler - CERN21 TDC: Results III

22 LECC 2003Kurt Hänsler - CERN22 Conclusions Natural radiation tolerance Higher functional density / Use in HEP experiments 3 prototypes, linear and enclosed designs, with satisfying results presented  Costs  Technology is in full production BUT still very high engineering costs  Low voltage design challenge Use of commercial library possible

23 LECC 2003Kurt Hänsler - CERN23 Besten Dank für Ihre Aufmerksamkeit. Grazie per la vostra attenzione. Muito obrigado pela vossa atenção. Thank you for your attention. Je vous remercie de votre attention. Acknowledgements: J. Christiansen, F. Faccio, K. Kloukinas, A. Marchioro, R. Szczygiel, G. Cervelli, E. Murer


Download ppt "Circuit design with a commercial 0.13  m CMOS technology for high energy physics applications K. Hänsler, S. Bonacini, P. Moreira CERN, EP/MIC."

Similar presentations


Ads by Google