Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROTEIN BASED STORAGE.

Similar presentations


Presentation on theme: "PROTEIN BASED STORAGE."— Presentation transcript:

1 PROTEIN BASED STORAGE

2 Contents Overview History of protein memory RAM Types Protein Memory
Data Write, Read & Erase techniques Practical Memory Cell Protein memory vs conventional RAM Applications Present status

3 Overview Protein memory is an experimental means of storing data.
Using proteins ,that respond to light from bacteria found in salt water, a small cube can store large amounts of data. By using lasers, the protein can be changed depending on various wave lengths, allowing them to store and recall data. As a result protein can be used to store enormous amounts of data using lasers to read and write binary code.

4 History of protein memory
Protein memory was discovered by Walther Stoeckenius and Dieter Oesterhelt at Rockefeller University in New York. They discovered that a protein isolated from a salt marsh bacterium exhibited photosensitive properties. They called this protein bacteriorhodopsin ,because it was very similar to the protein, rhodopsin that founds in the eyes of humans and animals.

5 RAM Types DRAM (Dynamic RAM) SRAM (Static RAM)

6 DRAM (Dynamic RAM) SRAM (Static RAM) Cheaper and widely used
Must be refreshed every few millisecond Cheaper and widely used Low power consumption SRAM (Static RAM) Faster than DRAM Costly

7 Protein memory How Protein Memory compete with electronic memory? Speed Reliability Capability Cost Basic unit of Protein Memory Bacterial protein molecule - Bacteriorhodopsin (bR)

8 Bacteriorhodopsin ( bR )
Purple membranes of Halo bacterium halobium. Changes mode of operation upon light incident. Light energy to chemical energy conversion.

9 Why bR? bR grows in salt marshals Where temp can exceed 150 degree Farad for extended time period Salt concentration in aprx 6 times that of sea water Survival indicates its resistance to thermal and photochemical damages Excellent optical characteristics & Long term stability

10 Photo cycle of Bacteriorhodopsin
Chromophore – Light absorbing component Light energy triggers a series of complex internal structural changes - Photocycle

11 Photo cycle of Bacteriorhodopsin

12 Molecular Structure Quite similar to ‘Rhodopsin’, the light detecting pigment in retinas of human eye

13 Data Writing technique Photo cycle

14 Data Reading technique Photo cycle

15 Data Erasing Technique
Blue laser erases encoded data Q state absorb blue light and return to original bR state Individual data can be erased using blue laser

16 bR Memory Cell by Bob Birge
- Implemented a prototype memory - bR molecules to store digital bits

17 Birge’s Memory Cell Stores data with 10,000 molecules per bit
Molecule switches in 500 femtoseconds Speed only limited by laser steering speed Estimated that Data stored live around 5 years without any refreshment

18 Birge’s Memory Cell VS Conventional Electronic RAM
Data access 300 times faster than conventional RAM Storage Capacity 4096 x 4096 bits page 16 Mb per page 1000 such pages 16 Gb total capacity

19 Birge’s Memory Cell VS Conventional Electronic RAM
Data Stability Data is highly stable Even the power is off, memory retain its information Energy efficient computer that can be switched on/off instantly No waste of booting time

20 Birge’s Memory Cell VS Conventional Electronic RAM
Transportation Can remove small data cubes and ship gigabytes of data No moving parts – safer than small hard drives Can operate in wider range of temperatures

21 Birge’s Memory Cell VS Conventional Electronic RAM
Cost bR protein can be produced in large volumes at low price Birge’s memory cell costs 2 US $ and can store 7 Gb.

22 Applications of bR Ultra fast RAM Finger print processing
Optical switches Neural Logic gates (genetic engineering)

23 Present Status Not used for commercial applications.
Used for military and scientific applications.. Researches are going on for…. High speed high capacity memory for commercial applications Ultimate machine intelligence with the aid of genetic engineering (A memory that mimics human brain). Carry a small encyclopedic cube containing all the information we need !!.

24 Conclusion During the past decade, the speed of computer processors increased almost 1,000 times, where as data storage capacities increased only by a factor of 50. Also, the transfer of data within the computer remains the principal bottleneck that limits performance. Protein memories use laser beam, which improve their life with reduction in wear and tear.

25 THANK YOU


Download ppt "PROTEIN BASED STORAGE."

Similar presentations


Ads by Google