Download presentation
Presentation is loading. Please wait.
Published byNorah Price Modified over 9 years ago
1
Energy Transformations Physics 11 – Chapter 7
2
Another try at humour…
3
Conservative and non-conservative forces: Conservative forces: oWork is independent of the path taken, it depends only on the final and initial positions oWe can always/only associate a potential energy with conservative forces. o This energy can be converted back into other forms of energy. Examples: gravity, spring forces
4
Conservative and non-conservative forces: Non-conservative forces: oWork does depend on path. oA force is non-conservative if it causes a change in mechanical energy (mechanical energy is the sum of kinetic and potential energy). oThis energy cannot be converted back into other forms of energy (irreversible). oAn applied force can transfer energy into or out of the system. Example: Frictional force Sliding a book on a table
5
Review: Energy conversions/transformations: Energy can be changed from one form to another. Changes in the form of energy are called energy conversions or transformations
6
Kinetic-Potential Energy Conversion Roller coasters work because of the energy that is built into the system. Initially, the cars are pulled mechanically up the tallest hill, giving them a great deal of potential energy. From that point, the conversion between potential and kinetic energy powers the cars throughout the entire ride.
7
Kinetic-Potential Energy Conversions As a basketball player throws the ball into the air, various energy conversions take place.
8
Ball slows down Ball speeds up
9
The Law of Conservation of Energy Energy can be neither created nor destroyed by ordinary means. It can only be converted from one form to another. If energy seems to disappear, then scientists look for it – leading to many important discoveries.
10
Law of Conservation of Energy In 1905, Albert Einstein said that mass and energy can be converted into each other. He showed that if matter is destroyed, energy is created, and if energy is destroyed mass is created. E = MC 2 http://www.pbs.org/wgbh/nova/einstein/le gacy.html http://www.pbs.org/wgbh/nova/einstein/le gacy.html
11
Law of conservation of mechanical energy: Only with conservative forces. Only with an isolated system (no energy added or removed): The total mechanical energy of a system remains constant! The final and initial energy of a system remain the same: E i = E f
12
Law of conservation of mechanical energy: Prime (‘) used to represent conditions after process has completed All units = Joules Don’t have to use all 3, depends on situation E k + E P +E s = E k ’ + E p ’ +E s ’
14
Example #1: What kinds of energy? Kinetic and gravitational potential
15
(A) E k + E p = E k ’ + E p ’ ½mv 1 2 + mgh 1 = ½mv 2 2 + mgh 2 **because all terms have m, we can divide each by “m”and it will “disappear!!!” ½v 1 2 + gh 1 = ½v 2 2 + gh 2 what we know: v 1 =2.0m/s, h 1 =40.m, h 2 =25m, v 2 =? ½(2.0) 2 + 9.81(40.0) = ½v 2 2 + 9.81(25) (2) + (392) = ½v 2 2 + (245) 2+ 392 -245 = ½v 2 2 149/0.5 = v 2 2 √298 = v 17.3 m/s = v 2
16
(B) E k + E p = E k ’ + E p ’ ½mv 1 2 + mgh 1 = ½mv 2 2 + mgh 2 **because all terms have m, we can divide each by “m” and it will “disappear!!!” ½v 1 2 + gh 1 = ½v 2 2 + gh 2 what we know: v 1 =2.0m/s, h 1 =40.m, v 2 =10.0 m/s, h 2 =? ½(2.0) 2 + 9.81(40.0) = ½(10) 2 + 9.81h 2 (2) + (392) = (50) + 9.81h 2 2+ 392 -50 = 9.81h 2 344/9.81 = h 2 35.1m = h 2
17
Try it : Pg 287 #1-8
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.