Download presentation
Presentation is loading. Please wait.
Published byFlora Barker Modified over 9 years ago
1
1 流体ブラックホールの ホーキング輻射と 準正規振動 京都大学 人間・環境学研究科 阪上雅昭 ,奥住聡 物理学会誌 11月号 解説 掲載予定
2
BlackHole spacetime (1) Horizon Free falling Local Inertial frame Local inertial frame falls down with light velocity Light cannot escape from the horizon Stretching effect: tidal force(falling vel. Is dependent on r)
3
3 BH spacetime (2) Free falling Local inertial frame Horizon Local inertial frame falls at light velocity Stretching effect: tidal force
4
4 Hawking Radiation : particle creation Photon (positive energy) Photon (negative energy) Energy Emit t ion from BH Tidal force breaks up virtual photon pair Stretching of wave function due to Tidal force occurs Created photon number Surface gravity vel. gradient at horizon
5
5 Hawking Radiation (2) wave dynamics Vacuum in past infinity Vacuum Positive freq. part appears ⇒ particle creation Observer Infinity Stretching horizon Collapse BH Tidal Force Star before gravitational Collapse General Relativity + Quantum Theory Negative freq.
6
Acoustic Black Hole Black Hole spacetime light flow with sonic point sound wave HorizonSonic Horizon Correspondence between BH and its sonic analogue We can easily realize acoustic black hole In laboratories. Horizon plays essential role in Hawking radiation Observation of HR is quite difficult In case of BEC
7
7 Sound Waves in Perfect Fluid wave equation for perturbed part of velocity potential Euler eq. continuity adiabatic irrotational This simulates wave propagation in curved spacetime: e.g. black hole.
8
8 throat flow transonic flow subsonic flow : subsonic flow : transonic flow → → flow Two Types of Flow in Laval Nozzle throat
9
9 Laval Nozzle: Horizon のある流れ 連続の式 ベルヌーイの 式 圧力関数 音速 (1)(2)の微 分から (1) (2) を消去 流体の密度 流体の速度 断面積
10
10 マッハ数 Laval Nozzle での流れ Sonic Horizon 加速 減速 加速 さらに加速
11
11 “Acoustic Hawking Radiation” “surface gravity” Acoustic BH sonic point(x=0) subsonic flow transonic flow propagation of downstream-region modes in subsonic-transonic flow negative freq. mode Positive freq component creation! gravitational collapse Stretching
12
12 Results (waveform observed upstream ) incident freq:15kHz horizon appeared at the throat affected portion by surface gravity
13
13 Spectrum of Acoustic Hawking Radiation (WKB analysis) Fourier component downstream region negative frequency upstream region positive frequency
14
14 Results (power spectrum of δp(t) ) sinusoidal portion(t<0) zoom(next) incident freq:15kHz Negative freq. Positive freq.
15
15 Numerical Results (power spectrum of δp(t) ) penetrates into positive frequency range! zoom(next) Negative freq.Positive freq.
16
16 Numerical Results (power spectrum of δp(t) ) Planckian fit
17
17 Summary ホーキング輻射 時空の非定常進化: Horizon の無い時空 horizon のある時空 粒子生成負エネルギーモード から 正エネルギーモードへのしみだし Horizon 近傍での Stretch 効果 モードが指数関数的でなくなる 粒子生成のスペクトル Planck 分布 Acoustic Black Hole by Laval Nozzle Hawking 輻射を実験室で検証できる Quasi-normal Mode outgoing BC 時間的には減衰,空間的には発散する メゾスコピック系の電気伝導と類似
18
18 “Acoustic BH” Experiment Project at Kyoto University THEORY Cosmology and Gravity Group EXPERIMENT Graduate School of Engineering TARGETS Hawking Radiation Quasinormal Modes numerical Planckian fit
19
イオン音波 (1) Continuity eq. (2) Motion of eq. (3) Poisson eq. electron ion Ion Acoustic Wave (electro static wave) kkDkD exp: C S ~1.5x10 6 cm/s for He
20
150cm 36 cm 5 cm He plasma Pyrex tube(5cm φ) 90cm 軸(z)方向 イオン音波 Exciter イオン音波 Receiver 流速生成用筒電極流速計測用 Mach プローブ プラズマ空間 計測用駆動 プローブ エンド プレート 外部磁場 プラズマ生成部 上流下流 直線型プラズマ実験装置( HPX) 生成法: ICP He ガス ICP:13.56MHz,1kW ガス圧: ~1.0mTorr 密度: ~10 9 [cm -3 ] 電子温度: ~10eV 磁場 :25~100Gauss イオンラーマ半径: 1.0~3.5cm プラズマ半径: ≒ 3.0cm 筒電極半径:≒ 2.5cm i-n 平均自由行程 : ~40cm Exciter と Receiver 間距離: 36 cm プラズマパラメータ
21
21
22
22
23
遷音速流の上流で受信したイオン音波のスペクトル 音速点形成前のスペクトル 音速点形成後のスペクトル 速度ポテンシャル: ( BH の表面重力に相当) 音速点の波の引き延ばし によるプランク分布
24
24 Numerical Simulation of Acoustic QN Ringing We perform two types of simulations: “Acoustic BH Formation” initial state: no flow set sufficiently large pressure difference final state: transonic flow “Weak Shock Infall” initial state: transonic flow ‘shoot’ a weak shock into the flow final state: transonic flow ~ BH formation~ test particle infall
25
Weak Shock Infall の例 Numerical QNM fitting
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.