Download presentation
1
Forces in Two Dimensions
Chapter 5 Forces in Two Dimensions
2
Targets I can represent vector quantities both graphically and algebraically. I can use Newton’s laws to analyze motion when friction is involved. I can use Newton’s laws with the knowledge of vectors to analyze motion in two dimensions
3
What is the total magnitude and direction?
5.1- Vectors Vector Addition 5 N 7 N What is the total magnitude and direction?
4
20 N 16 N What is the total magnitude and direction?
5
Vectors in Multiple Dimensions
Hint: When drawing two-dimensional problems graphically, you need to use a protractor (Please have one by Monday) Correct angles Measure the direction and magnitude of the resultant vector
6
Draw vectors tip to tail
Connect the tail of the first vector to the tip of the last vector Example #1-
7
Use Trigonometry to find the unknown vector’s direction and length
Pythagorean Theorem Law of Cosines Law of Sines
8
Pythagorean Theorem Only used when there is a RIGHT ANGLE
A2 + B2= R2 R= Resultant Example #2- Find the magnitude of the sum of Chris’s path if he goes south 5 km and then due east 4 km.
9
Law of Cosines R2=A2 + B2 – 2ABcosӨ Which angles are which
Example #3- If Connor travels a path that is 15 km and then turns and walks 25 km find the magnitude of the sum when the angle between them is 135o.
10
Example #4- Matthew decides to go for a hike. He walks 4
Example #4- Matthew decides to go for a hike. He walks 4.5 km in one direction, then makes a 45o turn to the right and walks another 6.4 km. What is the magnitude of his displacement?
11
Law of Sines 1
12
a/sin A = b/sin B = c/sin C
Example 5 Example: Calculate side "c" Law of Sines: a/sin A = b/sin B = c/sin C Put in the values we know: a/sin A = 7.0/sin(35°) = c/sin(105°) Ignore a/sin A (not useful to us): 7.0/sin(35°) = c/sin(105°) Now we use our algebra skills to rearrange and solve: Swap sides: c/sin(105°) = 7.0/sin(35°) Multiply both sides by sin(105°): c = ( 7.0 / sin(35°) ) × sin(105°) Calculate: c = ( 7.0 / ) × c = 12 .0
13
SOH CAH TOA
14
Component Vectors Ax=5 Ay=4
Components- a vector parallel to the x-axis and another parallel to the y-axis
15
Vector resolution- process of breaking a vector into its components
The direction of a vector is defined as the angle that the vector makes with the x-axis measured counter clockwise
16
Algebraic Addition of Vectors
Rx=Ax+Bx+Cx Ry=Ay+By+Cy Rx and Ry are at 90o angles so the magnitude of the resultant vector can be found by using the Pythagorean Theorem. R2=Rx2+ Ry2
17
Angle of the resultant vector Θ=tan-1(Ry/Rx)
The angle of the resultant vector is equal to the inverse tangent of the quotient of the y-component divided by the x-component of the resultant vector
18
Example 6 Add the vectors via the component method. A is 4.0 m south and B is 7.3 m northwest. What is the magnitude of the resultant vector? What is the magnitude of the resultant vector Θ?
19
5.2- Friction Static and Kinetic Friction
Kinetic Friction: exerted on one surface by another when 2 surfaces rub against each other because one or both of them are moving. Static Friction: exerted on one surface by another when there is no motion between the 2 surfaces
20
Friction Depend On: Normal Force applied Type of Material
What is the equation for Force of Kinetic Friction?
21
Equations Kinetic Friction Force Static Friction Force Ffkinetic=µkFN
The kinetic friction force is equal to the product of the coefficient of the kinetic friction and normal force Static Friction Force Ffstatic≤µsFN The static friction force is less than or equal to the product of the coefficient of the static friction and the normal force
22
Table 5-1 page 129
23
Example 7: Suppose that a particular machine in a factory has two steel pieces that must rub against each other at a constant speed. Before either piece of steel has been treated to reduce friction, the force necessary to get them to perform properly is 5.8 N. After the pieces have been treated with oil, what will be the required force?
24
Example 8: A girl exerts a 36 N horizontal force a she pulls a 52 N sled across a cement sidewalk at constant speed. What is the coefficient of kinetic friction between the sidewalk and the metal sled runners? Ignore air resistance What is the unit?
25
If the object is accelerating, use the equation
Fnet=F-µkFN
26
Example 9: You help your mom move a 41 kg bookcase to a different place in the living room. If you push with a force of 65 N and the bookcase accelerates at 0.12 m/s2, what is the coefficient of kinetic friction between the bookcase and the carpet?
27
5.3- Force and Motion in Two Dimensions
Equilibrium- net force = zero If I have two vectors, how would I find a third vector that brings it to equilibrium? 1st- Find the sum of the two vectors 2nd- The equilibriant will be equal in magnitude and opposite in direction! (Newton’s Third Law) Equilibriant- a force that puts an object in equilibrium
28
Extra Credit If you do the challenge problem on page 132, show all work, and get the correct answer (showing magnitude and direction), you will receive +2 extra credit points toward your test.
29
Motion Along an Inclined Plane
1st- Identify the forces acting on the object (free body diagram) 2nd- Set up your coordinate plane X-axis= Ff Y-axis= FN 3rd- Weight will not be equal to the FN so you must break it down into its components.
30
Example 10 A crate weighing 562 N is resting on a plane inclined 30.0o above the horizontal. Find the components of the weight forces that are parallel and perpendicular to the plane.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.