Download presentation
Presentation is loading. Please wait.
Published byPaulina Higgins Modified over 9 years ago
1
Experiments with ultracold RbCs molecules Peter Molony Cs Rb
2
Peter Molony - YAO 2014 2014-04-02 The RbCs team: Peter Molony, Phil Gregory, Michael Koeppinger, Zhonghua Ji, Bo Lu and Simon Cornish (PI) Theory:Caroline Blackley, Ruth Le Sueur, Jeremy Hutson
3
Peter Molony - YAO 2014 2014-04-02 Goal: A quantum array of polar molecules Mott Insulator Transition Convert to ground state RbCs molecules Jaksch et al., PRL 89, 040402 (2002) Damski et al. PRL 90, 110401 (2003) Rubidium Caesium RbCs: Stable against reactive collisions d = 1.25 D, B rot = 0.5 GHz Induced d eff = d / 3 for E = B rot / d = 0.8 kV / cm
4
Peter Molony - YAO 2014 2014-04-02 The experiment Dipole trap loaded by reducing field gradient Atoms collected in MOT Evaporation in quadrupole trap Load quadrupole trap Levitated dipole trap Apply a magnetic gradient to tilt the trap Reduce the beam intensity to lower the trap depth RF 2-species BEC! Phys. Rev. A 87 013625 (2013)
5
Peter Molony - YAO 2014 2014-04-02 The experiment 1.Create a high phase space density atomic sample. 6S 1/2 X1+X1+ a3+a3+ (1) 3 Deeply Bound Molecule Feshbach Molecule Free Atoms ~1560nm ~980nm Magneto-association Stimulated Raman Adiabatic Passage 2. Associate weakly-bound molecules via a Feshbach resonance. 3. Transfer Feshbach molecules to the rovibrational ground state using stimulated Raman adiabatic passage (STIRAP). Potential Energy Convert atoms to molecules Atomic State Molecular Bound State Magnetic Field (B)
6
Peter Molony - YAO 2014 2014-04-02 87 RbCs trapping ~4000 optically trapped molecules Phys. Rev. A 89 033604 (2014) Cs Rb
7
Peter Molony - YAO 2014 2014-04-02 87 RbCs STIRAP L.P. Yatsenko et al., PRA 65, 043409 (2002) SS PP SS PP 1 2 3 Relative linewidth of the two lasers D
8
Peter Molony - YAO 2014 2014-04-02 87 RbCs STIRAP L.P. Yatsenko et al., PRA 65, 043409 (2002) Narrow linewidth High intensity Intensity control
9
Peter Molony - YAO 2014 2014-04-02 87 RbCs spectroscopy Figure: M. Debatin, PhD Thesis, Innsbruck (2013) Data:S. Kotochigova and E. Tiesinga, J. Chem. Phys. 123, 174304 (2005) O. Docenko et al., PRA 81, 042511 (2010) STIRAP:W.C. Stwalley, EPJD 31, 221-225 (2004) Excited state with mixed singlet – triplet character Good Franck–Condon overlap for both transitions Our laser: 6330 → 6711 cm -1 Find suitable intermediate state
10
Peter Molony - YAO 2014 2014-04-02 87 RbCs STIRAP optical setup 1556 nm 980 nm EOM 980 nm DL Pro Cavity Wavemeter Experiment EOM 1556 nm DL Pro Fibre Coupler /2 Waveplate /4 Waveplate Optical Isolator Polarising Beam Splitter Glan-Thompson Polariser AOM Shutter Dichroic Mirror Photo Diode Molecules 1556 nm 980 nm
11
Peter Molony - YAO 2014 2014-04-02 87 RbCs STIRAP optical setup
12
Peter Molony - YAO 2014 2014-04-02 87 RbCs spectroscopy 7 transitions found so far:v’=38J’=3192560.47(2) GHz v’=38J’=1192556.62(2) v’=37J’=1191827.53(2) v’=35J’=1190789.15(2) v’=29J’=3192577.55(2) v’=29J’=2192574.54(2) v’=29J’=1192572.09(2)
13
Peter Molony - YAO 2014 2014-04-02 Ground state spectroscopy
14
Peter Molony - YAO 2014 2014-04-02 Ground state rotational constant B rot = 0.016352(1) cm -1 = 490.23(4) MHz Theory= 0.016(3)J Phys Chem A 116,11101 (2012) v=1 state 50 cm -1 higher
15
Peter Molony - YAO 2014 2014-04-02 Outlook 4000 87 RbCs molecules in optical dipole trap. Magnetic moment of 87 RbCs in different internal states measured. Spectroscopy on electronically excited states. Absolute ground state found by spectroscopy. Setup ready for STIRAP. Summary Cs Rb
16
Peter Molony - YAO 2014 2014-04-02 Outlook Measure dipole moment of ground state 87 RbCs molecules (electrodes ready) Transfer molecules into absolute ground state (STIRAP) Produce 85 RbCs molecules in new dipole trap New experimental setup Outlook Phys. Rev. A 87 010703(R) (2013)
17
Peter Molony - YAO 2014 2014-04-02 Goal: A quantum array of polar molecules Mott Insulator Transition Miscible Immiscible Convert to ground state RbCs molecules U 12 < (U 11 + U 22 )/2U 12 > (U 11 + U 22 )/2 Jaksch et al., PRL 89, 040402 (2002) Damski et al. PRL 90, 110401 (2003) Rubidium Caesium RbCs: Stable against reactive collisions d = 1.25 D, B rot = 0.5 GHz Induced d eff = d / 3 for E = B rot / d = 0.8 kV / cm
18
Peter Molony - YAO 2014 2014-04-02 Last time Cs 2 Feshbach molecules
19
Peter Molony - YAO 2014 2014-04-02 Last time
20
Peter Molony - YAO 2014 2014-04-02 Last time
21
Peter Molony - YAO 2014 2014-04-02 Last time
22
Peter Molony - YAO 2014 2014-04-02 Last time
23
Peter Molony - YAO 2014 2014-04-02 Magnetic moment
24
Peter Molony - YAO 2014 2014-04-02 Magnetic moment
25
Peter Molony - YAO 2014 2014-04-02 Trapped Cs 2 molecules
26
Peter Molony - YAO 2014 2014-04-02 87 RbCs Feshbach molecules
27
Peter Molony - YAO 2014 2014-04-02 87 RbCs Feshbach Molecules Cs Rb ~5000 RbCs molecules
28
Peter Molony - YAO 2014 2014-04-02 RbCs molecules Magnetic moment measurement Keep molecules in the same position since the magnetic moment changes while the molecules are falling Vary magnetic field gradient Measure position after different period of time mol,181G = -0.84(1) B
29
Peter Molony - YAO 2014 2014-04-02 87 RbCs magnetic moment
30
Peter Molony - YAO 2014 2014-04-02 Next step RbCs excited state spectroscopy Excited state potential through Fourier transform spectroscopy (FTS) (O. Docenko et al., PRA 81, 042511 (2010)) Ground state potential measured using laser-induced fluorescence combined with Fourier transform spectroscopy (LIF-FTS) (C.E. Fellows et al., J. Mol. Spectrosc. 197, 19 (1999))
31
Peter Molony - YAO 2014 2014-04-02 Next step RbCs excited state spectroscopy M. Debatin et al., Phys. Chem. Chem. Phys. 13, 18926 (2011) Resonances at ~ 1556 nm FWHM ~ 2 x 5 MHz
32
Peter Molony - YAO 2014 2014-04-02 First identify a suitable intermediate state with sufficient oscillator strength with both connected levels Excited state potential from PRA 81, 042511 (2010) Ground state potential from J. Mol. Spectrosc. 197, 19 (1999) Single photon excited state spectroscopy: Irradiate molecules only with L1 for 10 s to 10 ms Gamma can be calculated detuning the laser Rabi frequencies can be calculated using the decay during irradiation Two photon dark state resonance spectroscopy: Simultaneous irradiation with rectangular light pulses of L1 and L2 10 – 100 s irradiation time L2 << L1 (more 980 nm light) Vary detuning of L1 (1550 nm) and keep L2 in resonance How do I know L2 = 0 ???
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.