Download presentation
Presentation is loading. Please wait.
Published byElisabeth York Modified over 9 years ago
1
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth, Chris King et al. Hitachi Cambridge Jorg Wunderlich, Andrew Irvine, David Williams, Elisa de Ranieri, Byonguk Park, Sam Owen, et al. Institute of Physics ASCR Alexander Shick, Karel Výborný, Jan Zemen, Jan Masek, Vít Novák, Kamil Olejník, et al. University of Texas Allan MaDonald, et al. Texas A&M Jairo Sinova, et al.
2
Outline 1. Tunneling anisotropic magnetoresistance in transition metals 2. Ferromagnetism in (Ga,Mn)As and related semiconductors 3. Spintronic transistors
3
Spintronics: Spin-orbit & exchange interactions nucleus rest frame electron rest frame Thomas precession Coulomb repulsion & Pauli exclusion principle exchange interaction ferromagnetism spin-orbit interaction DOS
4
AMR ~ 1% MR effect TMR ~ 100% MR effect TAMR Exchange int.: Spin-orbit int.: magnetic anisotropy Exchange int.: AFM-FM exchange bias Au
5
ab intio theory Shick, et al, PRB '06, Park, et al, PRL '08 experiment Park, et al, PRL '08 TAMR in CoPt structures
6
spontaneous moment magnetic susceptibility Consider uncommon TM combinations Mn/W ~100% TAMR Consider both Mn-TM FMs & AFMs exchange-spring rotation of the AFM Scholl et al. PRL ‘04 Proposal for AFM-TAMR: first microelectronic device with active AFM component spin-orbit coupling TAMR in TM structures Shick, et al, unpublished Shick, et al, unpublished
7
Outline 1. Tunneling anisotropic magnetoresistance in transition metals 2. Ferromagnetism in (Ga,Mn)As and related semiconductors 3. Spintronic transistors
8
Magnetic materials Ferroelectrics/piezoelectrics Semiconductors spintronic magneto-sensors, memories electro-mechanical transducors, large & persistent el. fields transistors, logic, sensitive to doping and electrical gating TM-based semiconducting multiferroic spintronics sensors & memories transistors & logic
9
Ferromagnetic semiconductors GaAs - standard III-V semiconductor Group-II Mn - dilute magnetic moments & holes & holes (Ga,Mn)As - ferromagnetic semiconductor semiconductor Need true FSs not FM inclusions in SCs Mn Ga As Mn
10
Mn-d-like local moments As-p-like holes Mn Ga As Mn EFEF DOS Energy spin spin GaAs:Mn – extrinsic p-type semiconductor FM due to p-d hybridization (Zener local-itinerant kinetic-exchange) valence band As-p-like holes As-p-like holes localized on Mn acceptors << 1% Mn ~1% Mn >2% Mn onset of ferromagnetism near MIT
11
(Ga,Mn)As synthesis Low-T MBE to avoid precipitation High enough T to maintain 2D growth need to optimize T & stoichiometry for each Mn-doping Inevitable formation of interstitial Mn-donors compensating holes and moments need to anneal out high-T growth optimal-T growth
12
Interstitial Mn out-diffusion limited by surface-oxide GaMnAs GaMnAs-oxide Polyscrystalline 20% shorter bonds Mn I ++ O Optimizing annealing time & temperature (removing int. Mn & keeping Mn Ga in place) is essential Rushforth et al, unpublished x-ray photoemission Olejnik et al, ‘08 10x shorther annealing with etch
13
Indiana & California (‘03): “.. Ohno’s ‘98 T c =110 K is the fundamental upper limit..” Yu et al. ‘03 California (‘08): “…T c =150-165 K independent of x Mn >10% contradicting Zener kinetic exchange...” Nottingham & Prague (’08): T c up to 188 K so far “Combinatorial” approach to growth with fixed growth and annealing cond. ? Mack et al. ‘08 Tc limit in (Ga,Mn)As remains open
14
Weak hybrid. Delocalized holes long-range coupl. Strong hybrid. Impurity-band holes short-range coupl. InSb GaP d5d5 (Al,Ga,In)(As,P) good candidates, GaAs seems close to the optimal III-V host Other (III,Mn)V’s DMSs Mean-field but low T c MF Large T c MF but low stiffness Kudrnovsky et al. PRB 07
15
III = I + II Ga = Li + Zn Other DMS candidates Masek et al. PRL 07 But Mn isovalent in Li(Zn,Mn)As no Mn concentration limit and self-compensation possibly both p-type and n-type ferromagnetic SC (Li / Zn stoichiometry) GaAs and LiZnAs are twin SC (Ga,Mn)As and Li(Zn,Mn)As should be twin ferromagnetic SC
16
Towards spintronics in (Ga,Mn)As: FM & transport Dense-moment MS F << d - Eu - chalcogenides Dilute-moment MS F ~ d - Critical contribution to resistivity at T c ~ magnetic susceptibility Broad peak near T c disappeares with annealing (higher uniformity)???
17
Ni (Ga,Mn)As (Prague Nottingham) Fe Critical contribution at T c to d /dT like TM FMs d /dT ~ c v F ~ d - Fisher & Langer ’68 Novak et al., ‘08
18
TcTc TcTc EuCdSe Ni
19
As-p-like holes Ferromagnetism & strong spin-orbit coupling Strong SO due to the As p-shell (L=1) character of the top of the valence band VV B eff p s B ex + B eff TAMR discovered in (Ga,Mn)As Gold et al. PRL’04 Mn Ga As Mn
20
SO couped carries scattering coherently off Coulomb & polarized-magnetic potential of Mn > magnetic. only max AMR > Mn Ga ~ AMR in DMSs sign and magnitude (numerical) consistent with experiment
21
Remark: Extraordinary MRs & quantum coherent transport phenomena dirty metal UCF
22
Outline 1. Tunneling anisotropic magnetoresistance in transition metals 2. Ferromagnetism in (Ga,Mn)As and related semiconductors 3. Spintronic transistors
23
Gating of the highly doped (Ga,Mn)As: p-n junction FET p-n junction depletion estimates Olejnik et al., ‘08 ~25% depletion feasible at low voltages
24
AMR Increasing and decreasing AMR, T c, coercivity with depletion
25
Persistent variations of magnetic properties with ferroelectric gates Stolichnov et al., Nat. Mat.‘08
26
Electro-mechanical gating with piezo-stressors Rushforth et al., ‘08 Strain & SO Electrically controlled magnetic anisotropies
27
Single-electron transistor Two "gates": electric and magnetic (Ga,Mn)As spintronic single-electron transistor Huge, gatable, and hysteretic MR Wunderlich et al. PRL ‘06
28
AMR nature of the effect normal AMR Coulomb blockade AMR
29
& electric & magnetic control of Coulomb blockade oscillations Q0Q0 Q0Q0 e 2 /2C [ 010 ] M [ 110 ] [ 100 ] [ 110 ] [ 010 ] SO-coupling (M) SourceDrain Gate VGVG VDVD Q Single-electron charging energy controlled by V g and M
30
CBAMR if change of | (M)| ~ e 2 /2C CBAMR if change of | (M)| ~ e 2 /2C In our (Ga,Mn)As ~ meV (~ 10 Kelvin)In our (Ga,Mn)As ~ meV (~ 10 Kelvin) In room-T ferromagnet change of | (M)|~100KIn room-T ferromagnet change of | (M)|~100K Room-T conventional SET (e 2 /2C >300K) possible Theory confirms chemical potential anisotropies in (Ga,Mn)As & predicts CBAMR in SO-coupled room-T c metal FMs
31
Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 V DD V A V B V A V B Vout 0 0 0 OFF ON OFF 0 0 1 1 ON OFF AB Vout 00 0 10 1 01 1 11 1 0 0 1 ON OFF 0 0 1 ON 1 1 1 1 OFF ON 1 1 OFF 1 “OR” Nonvolatile programmable logic
32
V DD V A V B V A V B Vout Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 AB Vout 00 0 10 1 01 1 11 1 “OR” Nonvolatile programmable logic
33
Physics of SO & exchange SET Resistor Tunneling device Chemical potential CBAMR Tunneling DOS TAMR Group velocity & lifetime AMR Device designMaterials TM FMs (III,Mn)V, I(II,Mn)V DMSs Mn-based TM FMs&AFMs TM FMs, MnAs, MnSb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.