Download presentation
Presentation is loading. Please wait.
Published byKristopher Walsh Modified over 9 years ago
1
Compatibility of the IERS earth rotation representation and its relation to the NRO conditions Athanasios Dermanis Department of Geodesy and Surveying The Aristotle University of Thessaloniki
2
Department of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Earth Rotation: Relation of Terrestrial to Celestial Reference System Celestial Reference System: Terrestrial Reference System: Mathematical model: = orthogonal rotation matrix = earth rotation parameters
3
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 To every orthogonal rotation matrix R(t) corresponds a unique rotation vector: defined by Notation: [a ] is the antisymmetric matrix with axial vector a
4
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 R = QDW: Separation of earth rotation in 3 parts: D = Diurnal rotation Number of independent parameters needed:3 (geometric description) 6 (dynamic description – state vector) 9 parameters NRO conditions: Q = Precession-Nutation s = s (g,F) = s (x P,y P ) s = s(d,E) = s(X,Y) Classical model: IERS model (IAU 2000): OSU Report Nr. 245, 1977: W = Polar motion 5 parameters 7 parameters reduced to 5 by 2 NRO conditions
5
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Characteristics of the IERS earth rotation representation Q D W Precession Nutation Diurnal Rotation around Polar Motion from theory from observations R high frequency terms removed from precession-nutation CIP Consequences on model-compatible rotation vector Rotation vector not aligned to common 3 rd axis of intermediate systems Magnitude not equal to rate of diurnal rotation angle
6
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Objective: Construct a compatible representation with a 3 part separation Objective: Construct a compatible representation with a 3 part separation
7
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Objective: Construct a compatible representation with a 3 part separation Objective: Construct a compatible representation with a 3 part separation Involving 2 intermediate reference systems: Find a representation of the same separated form a the IERS representation Intermediate Celestial: Intermediate Terrestrial:
8
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Objective: Construct a compatible representation with a 3 part separation Objective: Construct a compatible representation with a 3 part separation Involving 2 intermediate reference systems: Find a representation of the same separated form a the IERS representation Subject to the following (natural) compatibility conditions: Intermediate Celestial: Intermediate Terrestrial: 2 directional conditions: 1 magnitude condition:
9
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors
10
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors Relative rotation vectors:
11
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors of Intermediate Celestial with respect to Celestial Relative rotation vectors: Defined by:
12
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors of Intermediate Celestial with respect to Celestial Relative rotation vectors: of Intermediate Terrestrial with respect to Intermediate Celestial Defined by:
13
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors of Intermediate Celestial with respect to Celestial Relative rotation vectors: of Intermediate Terrestrial with respect to Intermediate Celestial of Terrestrial with respect to Intermediate Terrestrial Defined by:
14
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Decomposition of the rotation vector in 3 relative rotation vectors of Intermediate Celestial with respect to Celestial Relative rotation vectors: of Intermediate Terrestrial with respect to Intermediate Celestial of Terrestrial with respect to Intermediate Terrestrial Defined by:
15
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 In the Intermediate Celestial reference system The compatibility conditions
16
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 In the Intermediate Celestial reference system = Celestial Pole (direction of diurnal rotation), e.g. CEP, CIP = Compatible Celestial Pole (CCP) = Compatible rotation vector (derived from rotation matrix R) The compatibility conditions
17
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 7 parameters instead of 3 minimum required = 4 conditions needed ! The compatibility conditions
18
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 7 parameters instead of 3 minimum required = 4 conditions needed ! The compatibility conditions
19
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 2 direction conditions: 7 parameters instead of 3 minimum required = 4 conditions needed ! The compatibility conditions
20
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 2 direction conditions: 1 magnitude condition: 7 parameters instead of 3 minimum required = 4 conditions needed ! The compatibility conditions
21
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 2 direction conditions: 1 magnitude condition: Missing 4th condition: 7 parameters instead of 3 minimum required = 4 conditions needed ! s = arbitrary ! The compatibility conditions
22
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 2 direction conditions: 1 magnitude condition: Missing 4th condition: 7 parameters instead of 3 minimum required = 4 conditions needed ! s = arbitrary ! 4th condition = arbitrary definition of origin of diurnal rotation angle The compatibility conditions
23
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) :
24
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : 2 direction conditions:
25
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : 2 direction conditions: 1 magnitude condition:
26
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : The 4 independent compatibility conditions 2 direction conditions: 2 NRO conditions: 2 direction conditions: 1 magnitude condition:
27
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : The 4 independent compatibility conditions 2 direction conditions: 2 NRO conditions: 2 direction conditions: 1 magnitude condition:
28
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : The 4 independent compatibility conditions 2 direction conditions: 2 NRO conditions: 2 direction conditions: 1 magnitude condition:
29
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : The 4 independent compatibility conditions 2 direction conditions: 2 NRO conditions: 2 direction conditions: 1 magnitude condition:
30
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 The NRO conditions in relation to the compatibility conditions The 2 NRO (Non Rotating Origin) conditions: CEO (Celestial Ephemeris Origin) : TEO (Terrestrial Ephemeris Origin) : The 4 independent compatibility conditions 2 direction conditions: 2 NRO conditions: 2 direction conditions: 1 magnitude condition: magnitude condition satisfied !
31
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Explicit form of the 4 compatibility conditions
32
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Explicit form of the 4 compatibility conditions Direction conditions:
33
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Explicit form of the 4 compatibility conditions NRO conditions: Direction conditions:
34
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Explicit form of the 4 compatibility conditions NRO conditions: Direction conditions: Direction conditions + NRO conditions : When , E, d [and s(E,d)] are known then F, g [and s(F,g)] are uniquely determined !
35
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Construct a compatible separated model from observations only Analyze observations using a 3 parameter model:
36
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Construct a compatible separated model from observations only Analyze observations using a 3 parameter model: Compute rotation vector components, magnitude & directions (CCP components):
37
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Construct a compatible separated model from observations only Analyze observations using a 3 parameter model: Compute rotation vector components, magnitude & directions (CCP components): Compute precession-nutation and polar motion angles:
38
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Construct a compatible separated model from observations only Analyze observations using a 3 parameter model: Compute rotation vector components, magnitude & directions (CCP components): Compute precession-nutation and polar motion angles: Determine s and s from NRO conditions:
39
The Aristotle University of ThessalonikiDepartment of Geodesy and Surveying Athanasios DermanisJournées des Systèmes de Référence Spatio-Temporels – Warsaw 2005 Construct a compatible separated model from observations only Analyze observations using a 3 parameter model: Compute rotation vector components, magnitude & directions (CCP components): Compute precession-nutation and polar motion angles: Compute diurnal rotation angle: Determine s and s from NRO conditions:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.