Download presentation
Presentation is loading. Please wait.
Published byBritton Norton Modified over 9 years ago
1
Cellular Respiration 1. g. Students know the role of the mitochondria in making stored chemical-bond energy available to cells by completing the breakdown of glucose to carbon dioxide. Mitochondria consist of a matrix where three-carbon fragments originating from carbohydrates are broken down (to CO2 and water) and of the cristae where ATP is produced. Cell respiration occurs in a series of reactions in which fats, proteins, and carbohydrates, mostly glucose, are broken down to produce carbon dioxide, water, and energy. Most of the energy from cell respiration is converted into ATP, a substance that powers most cell activities. 1. i.* Students know how chemiosmotic gradients in the mitochondria and chloroplast store energy for ATP production. Enzymes called ATP synthase, located within the thylakoid membranes in chloroplasts and cristae membranes in mitochondria, synthesize most ATP within cells. The thylakoid and cristae membranes are impermeable to protons except at pores that are coupled with the ATP synthase. The potential energy of the proton concentration gradient drives ATP synthesis as the protons move through the ATP synthase pores. The proton gradient is established by energy furnished by a flow of electrons passing through the electron transport system located within these membranes.
2
Cues Vocabulary Mitochondria Cellular Respiration ATP Cellular Energy
Stage 1 Stage 2 Fermentation 11
3
Vocabulary Cellular Respiration – the transfer of energy from an organic compound into ATP Fermentation – the breakdown of carbohydrates by enzymes, bacteria, yeasts, or mold in the absence of oxygen Pyruvate- an ion of a three-carbon organic acid called pyruvic acid.
4
Energy: Energy for living things comes from food. Originally, the energy in food comes from the sun.
5
Organisms that use light energy from the sun to produce food—autotrophs (auto = self)
Ex: plants and some microorganisms (some bacteria and protists)
6
Organisms that CANNOT use the sun’s energy to make food—heterotrophs
Ex: animals and most microorganisms
7
All energy is stored in the bonds of compounds—breaking the bond releases the energy
When the cell has energy available it can store this energy by adding a phosphate group to ADP, producing ATP
9
Mitochondria The matrix where 3-carbon pieces that came from carbohydrates are broken down to (CO2 and water) The cristae is where ATP is made
10
Cellular Respiration Is a series of reactions where fats, proteins, and carbohydrates, mostly glucose, are broken down to make CO2, water, and energy.
11
ATP Most of the energy from cell respiration is converted into ATP
ATP is a substance that powers most cell activities.
12
Cellular Respiration Cellular Energy
The Stages of Cellular Respiration Cellular respiration has two stages. Glycolysis The first stage of cellular respiration is called glycolysis. Aerobic and Anaerobic Respiration The second stage of cellular respiration is either aerobic respiration (in the presence of oxygen) or anaerobic respiration (in the absence of oxygen). A large amount of ATP is made during aerobic respiration. NAD+ is recycled during the anaerobic process of fermentation. 12
13
Cellular Respiration Stage One: Breakdown of Glucose
Glycolysis Glucose is broken down to pyruvate during glycolysis, making some ATP. 13
14
Cellular Respiration Stage Two: Production of ATP
Krebs Cycle The Krebs cycle is a series of reactions that produce energy-storing molecules during aerobic respiration. Electron Transport Chain During aerobic respiration, large amounts of ATP are made in an electron transport chain. 14
15
Cellular Respiration Fermentation in the Absence of Oxygen
Fermentation When oxygen is not present, fermentation follows glycolysis, regenerating NAD+ needed for glycolysis to continue. Lactic Acid Fermentation In lactic acid fermentation, pyruvate is converted to lactate. 15
16
Cellular Respiration Cellular Respiration is a metabolic process like burning fuel Releases much of the energy in food to make ATP This ATP provides cells with the energy they need to carry out the activities of life. C6H12O6+O2 CO2 + H2O + ATP 1. g. Students know the role of the mitochondria in making stored chemical-bond energy available to cells by completing the breakdown of glucose to carbon dioxide. Mitochondria consist of a matrix where three-carbon fragments originating from carbohydrates are broken down (to CO2 and water) and of the cristae where ATP is produced. Cell respiration occurs in a series of reactions in which fats, proteins, and carbohydrates, mostly glucose, are broken down to produce carbon dioxide, water, and energy. Most of the energy from cell respiration is converted into ATP, a substance that powers most cell activities. 1. i.* Students know how chemiosmotic gradients in the mitochondria and chloroplast store energy for ATP production. Enzymes called ATP synthase, located within the thylakoid membranes in chloroplasts and cristae membranes in mitochondria, synthesize most ATP within cells. The thylakoid and cristae membranes are impermeable to protons except at pores that are coupled with the ATP synthase. The potential energy of the proton concentration gradient drives ATP synthesis as the protons move through the ATP synthase pores. The proton gradient is established by energy furnished by a flow of electrons passing through the electron transport system located within these membranes.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.