Presentation is loading. Please wait.

Presentation is loading. Please wait.

Heraeus School Flavour Physics and CP Violation 29./30. August 2005.

Similar presentations


Presentation on theme: "Heraeus School Flavour Physics and CP Violation 29./30. August 2005."— Presentation transcript:

1 Heraeus School Flavour Physics and CP Violation 29./30. August 2005

2  Historical Intro: Discovery of the tau  Basic Properties - Branching Ratios - Kinematics - Mass - Lifetime  Hot Topics - QCD / Isospin - Lepton Flavour Violation

3

4 τ υeυe υµυµ υτυτ W eµu d’ uu R τ == N C S ew ( 1 + δ pert (α s ) + δ non-pert + δ ew ) Γ had Γ e 0.1910 -0.023 0.0010 Gluon 20% 20% 60%

5 Γ (τ → υ τ had) Γ (τ → υ τ e υ e ) Rτ =Rτ = B (τ → υ τ had) B (τ → υ τ e υ e ) = = 1 - B (τ → υ τ e υ e ) - B (τ → υ τ µ υ µ ) B (τ → υ τ e υ e ) 1 B (τ → υ τ e υ e ) = - 1.9726 B (τ → υ τ e υ e ) = 0.1784 ± 0.0006  α s (m Z ) = 0.121 ± 0.003

6 PDG 2004

7 One of the most precise measurements of  s Many tests of QCD predictions

8 1. Definition of R  R  = = ∫ ds  had  e ee d  had ds 0 mm 2. Optical Theorem d  had = (2  ) 4  4 (...) 1 2 m  GF2GF2 L    0 |J  | had   had |J † | 0  d  had d  d  had = 1 2 m  GF2GF2 L  2 Im   0 | J  J † | 0  d 

9 s m  2 3. Lorentz decomposition 4. Extension to the Complex Plain  0 | J  J † | 0  = (q  q – g  q 2 )  (1) (q 2 ) + q  q  (0) (q 2 ) R  = 6  i (1 – ) 2 (1 + )  (1) (q 2 ) ds m  2 ∫ 2 s m  2

10 R τ == N C S ew ( 1 + δ pert (α s ) + δ non-pert + δ ew ) Γ had Γ e 0.1910 -0.023 0.0010 perturbative, strong correction calculated to 3rd order theorists working on 4th order corrections

11 R τ = 12 π S ew |V ud | 2 m τ 2 ds (1 - ) 2 (1 + ) smτ2smτ2 2s m τ 2 Im Π (s) 0 mτ2mτ2 v(s) = 2 π Im Π(s) a(s) = 2 π Im Π(s)

12 R τ = 12 π S ew |V ud | 2 m τ 2 ds (1 - ) 2 (1 + ) smτ2smτ2 2s m τ 2 Im Π (s) 0  α s ( ) s0s0 s0s0 mτ2mτ2 mτ2mτ2 s0s0

13 Okay down to ≈ 1 GeV

14 PDG 2004

15 consistent

16 Deviations from standard model ?

17 optical theoreme Π(s) universal function e + e - → had τ → ν τ had (g-2) μ

18 10 -11 10 -9 10 -7 10 -5 10 -3 QED hadr. contribution weak contribution new physics? exp a  = g  - 2 2

19 (2003: 204 ± 7)

20

21 Isospin Violation ?

22 τ υτυτ W q q’ e  q q e 2. quark mass  phase space correction  negligible 1.quark charge  QED radiation  theor. estimate 3. pion mass (  o ≠  + )  phase space correction  taken into account 4. meson masses (  o ≠  + ?)  phase space correction  should be small but.......

23

24

25

26  Discrapency unresolved  Better theoretical estimates of isospin violation  More precise and more careful measurements e + e - : radiative return Nowosibirsk τ : new measurements τ cf, CLEO-c, b-factories e + e - : direct measurement DaΦne, CLEO-c, b-factories, Nowosibirsk

27

28  (leptons – anti-leptons) initial =  (leptons – anti-leptons) final each generation separately -  --  -  -   -  +  -   +  ++  + -  K--  K- B 0  D -  +  t  b  +  e + e -   +  - D -   -  no violation observed

29  ->   violate lepton numbers     

30

31 Affects the Tau ? -- --   W-W-  -   -

32 Affects the Tau ? -- --   W-W-  -   - neutrino oscillation      okay But: energy/momentum conservation violated

33 Affects the Tau ? -- --   W-W-  -   -   branching ratio standard model: 10 -40 other Models: 10 -40 … 10 -6

34 Affects the Tau ? -- --   W-W-  -   -  +  - branching ratio standard model: 10 -40 … 10 -14 other models: 10 -40 … 10 -7 -- ++

35     W W Z = υeυµυτυeυµυτ mixing matrix υ1υ2υ3υ1υ2υ3 ~  U  i U i 

36 breaks the GIM mechanism

37  -   -   inv. mass ( ,  ) = tau mass  energy ( ,  ) = tau energy Background:         random    other background    is experimentally easier, but lower branching ratio (?)

38

39  -  e - 

40  -   - 

41  E = E reco -  s/2  m = m reco - m 

42

43  -   -  +  - at the LHC Advantage: more taus Disadvantage: more background tau sources: W   1.7 10 8  /Z   8.0 10 8 D s   X 1.5 10 12 B 0   X 4.0 10 11 B ±   X 3.8 10 11 B s   X 7.9 10 10 1 year @ low luminosity

44  -   -  +  -  bei CMS Simulation with underlying event (low luminosity)

45  -   -  +  -  at CMS W    10.000 events trigger track reconstruction

46  = -ln tan  /2

47 Level-1 Trigger: Single Muonp T > 14 GeV Di-Muonp T > 3 GeV

48 b-factories:can approach 10 -8 in most channels LHC:only     10 12 taus (low lumi) efficiency 1% possible ??? limits of 10 -10 LHC:can we use high-lumi running ??? work has just begun !

49  Historical Intro: Discovery of the tau  Basic Properties - Branching Ratios - Kinematics - Mass - Lifetime  Hot Topics - QCD / Isospin - Lepton Flavour Violation


Download ppt "Heraeus School Flavour Physics and CP Violation 29./30. August 2005."

Similar presentations


Ads by Google