Download presentation
Presentation is loading. Please wait.
Published byCandace Roxanne Murphy Modified over 9 years ago
1
Syllabus for CHEM 3281 Fall Semester, 2003 Faculty:Dr. Richard F. Browner Boggs Chemistry & Biochemistry, Rm. B-20 (404) 894-4020 rick.browner@chemistry.gatech.edu Lab Coordinator:Dr. Robert Braga TAs: Lecture: MWF 12-110 p.m. (Boggs 2-28) Laboratory: W 2:00-5:00 p.m. ( Boggs 1-72) Required Text: "Chemical Analysis: Modern Instrumentation, Methods and Techniques" F. Rouessac and A. Rouessac, Wiley & Sons, Chichester, 2001 Recommended: “Analytical Instrumentation: Performance, Characteristics and Quality” G. Currell, Wiley & Sons, Chichester, 2000
2
Objectives: Survey of analytical instrumentation and techniques specifically for engineering students Goal: to provide engineering students with a fundamental understanding of chemical analysis and appropriate figures of merit (sensitivity, selectivity, limit- of-detection, etc.) enabling them to communicate effectively with analytical chemists and properly interpret analytical results presented to them. Lecture topics/readings provide the student with the theoretical basis for each week’s experiments. The laboratory will provide the student the opportunity to become acquainted with a particular laboratory instrument and use it to perform a specific analysis.
3
The course grade will equally weight the student’s performance in lab and lecture.* Final grades will be given based on the following scale: A (100 – 80%) B (79 – 70%) C (69-60%) D (59-50%) F (below 50%) There will be two (2) one-hour Exams and a Final Comprehensive Exam, covering all the course lecture material (see Calendar). Each one-hour exam will be worth 15%, and the final exam will be worth 20%. As the final exam is comprehensive, your grade on the final exam, if it is higher than your average course grade, including one-hour exams and labs., will determine your overall final grade. Objectives (cont’d): * To pass the course as a whole, a passing grade (i.e >50%) is required in both lab and lecture.
4
Lectures will be devoted to both theoretical and practical aspects of the analytical procedures encountered in the laboratory. Lecture topics, exam dates, and suggested readings are available on the WebCT site for this course. Attendance at laboratory is required of all students. Students must be on time for each lab meeting since the laboratories are tightly scheduled and there is very little free time available. The lab will not be open at hours other than those scheduled. Students may not under any circumstances work in the laboratory without supervision. Wearing safety eyewear in the laboratory is absolutely mandatory! You will be asked to leave the lab and obtain safety eyewear if you are found without it. There will be no exceptions to this rule. Each student is required to keep and maintain the equipment in working order. Instructions for each laboratory experiment are available on-line under WebCT. Each student is required to maintain a laboratory notebook. The notebook must have a sewn-in binding with the ability to make a carbon copy of each page. A carbon copy of the notes and data you obtained must be turned into the TA at the completion of each lab experiment. General Information and Policies:
5
Initial Tasks: Prior to beginning laboratory work each student must: Sign and date two copies of the Safety Notes page, retaining one copy for your records. Maintain a $50 balance on your Buzz Card for replacement of lost or broken lab equipment. Purchase a laboratory notebook (with carbon copy pages) and safety goggles. Lab begins this week with Experiment #1.
6
This is your eye!
7
This is your eye after attack by caustic.
8
This is your eye after attack by acid.
9
This is your eye after attack by foreign objects.
10
Is it worth the risk?
11
What you can expect from Experiment #1?
12
Pellet #Black 15.4730 25.6881 35.5188 45.6104 55.2834 66.1358 76.0242 85.2807 94.4559 105.5548 115.6031 Max 6.1358 Mean5.5117 Min 4.4559 S.D.0.4387 What conclusions can be drawn? Repeated Measurement 5.6881 5.6880 5.6883 5.6884 5.6882 Mean = 5.6882 S.D.= 0.0002 ?
13
Rejecting Outliers - The Q-test Y1Y1 d range Discard outlier if and only if Q calc > Q crit. Q-test may be used to reject only one data point per set. Q calc = d/rangeCritical Values of Q
14
Measurement Precision vs. Sampling Variance Pellet # White 15.9340 25.6096 35.8875 45.4040 55.4187 65.7357 75.4065 85.4027 95.3670 105.5853 115.8508 Max 5.9340 Mean5.6002 Min 5.3670 S.D.0.2186 Repeated Measurement 5.6096 5.6092 5.6097 5.6099 5.6094 Mean = 5.6096 S.D.= 0.0003 What conclusions can be drawn?
15
Y1Y1 Are the two sets of data significantly different? Y1Y1 The null hypothesis is disproved when t calc > t crit. There exists a significant difference between the two data sets. When t calc < t crit the null hypothesis cannot be rejected and no significant difference between the two sets exists. Hypothesis testing
16
Testing the Null Hypothesis Student’s t test The null hypothesis is disproved only when t calc > t crit and the alternate hypothesis is accepted. Critical Values of t tolerateacceptreject
17
Note:The overall variance of an analysis is a function of the precision of the measurement and the variability of the sample.
18
Figures of Merit for Analytical Methods Precision - absolute or relative standard deviation, variance, coefficient of variation Accuracy (or bias) – absolute or relative error Sensitivity – calibration or analytical sensitivity Detection limit – limit of detection, limit of quantitation Concentration range – linear dynamic range Selectivity – coefficient of selectivity
19
Precision vs. Accuracy Low accuracyHigh accuracy Low precision High precision
20
Accuracy Error – difference between your answer and the “true” one. absolute error = observed value – true value relative error = 100 * absolute error/true value Types of Error: Systematic – all measurements deviate from the true value by the same magnitude and direction indicating a problem with the method Random – random variations in measurement that can be treated statistically Blunders - human error in performing method that prevent acquisition of reliable measurement
22
What do you do when you don’t know the true value? Precision establishes repeatability of measurement, not accuracy
23
Sensitivity R = mX + b + residual sensitivity = slope
24
Detection
25
Concentration Range Linear dynamic range = # orders of magnitude in concentration that response is linear
26
Selectivity For a sample containing an analyte A as well as potential interfering species B and C, the instrument signal, S, will be: S = m A C A + m B C B + m C C C + S blank The selectivity coefficient for A w/r B is: k B,A = m B /m A Thus, B interferes when m B is > 0 When selectivity coefficients are known for interferences in a sample matrix, the concentration of the unknown can still be determined using the following equation: S = m A (C A + k B,A C B + k C,A C C ) + S blank Note: if the presence of C suppresses the value of m A, the sign of k C,A will be negative.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.