Download presentation
Presentation is loading. Please wait.
Published byBaldric Price Modified over 9 years ago
1
INTRODUCTION TO MICROPROCESSOR Engr. Ammar Anwar Khan
2
TUTORIAL # 1 EE-353 Review of basic topics to warm up !!!!! 2
3
NUMBER SYSTEM 3 The most commonly used number systems are: BinaryBase: 2 OctalBase: 8 DecimalBase: 10 HexadecimalBase: 16
4
NUMBER SYSTEM 4 SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No Hexadecimal160, 1, … 9, A, B, … F No
5
NUMBER SYSTEM 5 DecimalBinaryOctal Hexa- decimal 0000 1111 21022 31133 410044 510155 611066 711177
6
NUMBER SYSTEM 6 DecimalBinaryOctal Hexa- decimal 81000108 91001119 10101012A 11101113B 12110014C 13110115D 14111016E 15111117F
7
NUMBER SYSTEM CONVERSIONS 7 The possibilities: Hexadecimal DecimalOctal Binary 25 10 = 11001 2 = 31 8 = 19 16 Base
8
BINARY TO DECIMAL 8 Hexadecimal DecimalOctal Binary
9
9 Example 101011 2 => 1 x 2 0 = 1 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 0 x 2 4 = 0 1 x 2 5 = 32 43 10 Bit “0” (LSB)
10
OCTAL TO DECIMAL 10 Hexadecimal DecimalOctal Binary
11
11 Example 724 8 => 4 x 8 0 = 4 2 x 8 1 = 16 7 x 8 2 = 448 468 10
12
HEXADECIMAL TO DECIMAL 12 Hexadecimal DecimalOctal Binary
13
13 Example ABC 16 =>C x 16 0 = 12 x 1 = 12 B x 16 1 = 11 x 16 = 176 A x 16 2 = 10 x 256 = 2560 2748 10
14
DECIMAL TO BINARY 14 Hexadecimal DecimalOctal Binary
15
15 Example 125 10 = ? 2 2 125 62 1 2 31 0 2 15 1 2 7 1 2 3 1 2 1 1 2 0 1 125 10 = 1111101 2
16
OCTAL TO BINARY 16 Hexadecimal DecimalOctal Binary
17
17 Example 705 8 = ? 2 7 0 5 111 000 101 705 8 = 111000101 2
18
HEXADECIMAL TO BINARY 18 Hexadecimal DecimalOctal Binary
19
19 Example 10AF 16 = ? 2 1 0 A F 0001 0000 1010 1111 10AF 16 = 0001000010101111 2
20
DECIMAL TO OCTAL 20 Hexadecimal DecimalOctal Binary
21
21 Example 1234 10 = ? 8 8 1234 154 2 8 19 2 8 2 3 8 1234 10 = 2322 8
22
DECIMAL TO HEXADECIMAL 22 Hexadecimal DecimalOctal Binary
23
23 Example 1234 10 = ? 16 1234 10 = 4D2 16 16 1234 77 2 16 4 13 = D 16 0 4
24
BINARY TO OCTAL 24 Hexadecimal DecimalOctal Binary
25
25 Example 1011010111 2 = ? 8 1 011 010 111 1 3 2 7 1011010111 2 = 1327 8
26
BINARY TO HEXADECIMAL 26 Hexadecimal DecimalOctal Binary
27
27 Example 1010111011 2 = ? 16 10 1011 1011 2 B B 1010111011 2 = 2BB 16
28
OCTAL TO HEXADECIMAL 28 Hexadecimal DecimalOctal Binary
29
29 Example 1076 8 = ? 16 1 0 7 6 001 000 111 110 2 3 E 1076 8 = 23E 16
30
HEXADECIMAL TO OCTAL 30 Hexadecimal DecimalOctal Binary
31
31 Example 1F0C 16 = ? 8 1 F 0 C 0001 1111 0000 1100 1 7 4 1 4 1F0C 16 = 17414 8
32
COMMON POWERS 32 Base 2 PowerPrefaceSymbol 2 10 kilok 2 20 megaM 2 30 GigaG Value 1024 1048576 1073741824
33
33 Example 1.84 * 2 30 1. Double click on My Computer 2. Right click on C: 3. Click on Properties
34
BINARY ARITHMETIC OPERATIONS 34 Addition Complements Subtraction
35
BINARY ADDITION 35 0 + 0 0 + 1 1 + 0 1 + 1 1 0 Carry Bit (a) (b) (c)(d)
36
BINARY COMPLEMENT – 1’S COMPLEMENT 36 Example 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1
37
2’S COMPLEMENT 37 1001110 0110001 + 1 0110010 One’s Complement Two’s Complement
38
BINARY SUBTRACTION 38 Example 1101 -1001 +0111 10100 If there is a carry then it is ignored. Thus, the answer is 0100. Two’s complement of 1001
39
End 39
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.