Presentation is loading. Please wait.

Presentation is loading. Please wait.

Network-Coding Multicast Networks With QoS Guarantees Yuanzhe Xuan and Chin-Tau Lea, Senior Member, IEEE IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19,

Similar presentations


Presentation on theme: "Network-Coding Multicast Networks With QoS Guarantees Yuanzhe Xuan and Chin-Tau Lea, Senior Member, IEEE IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19,"— Presentation transcript:

1 Network-Coding Multicast Networks With QoS Guarantees Yuanzhe Xuan and Chin-Tau Lea, Senior Member, IEEE IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011 Speaker: Lin-You Wu

2 Outline I. INTRODUCTION II. OPTIMAL ROUTING FORMULATION III. SOLVING THE OPTIMAL ROUTING PROBLEM IV. NUMERICAL RESULTS V. CONCLUSION

3 I. Introduction It is well known that without admission control, network congestion is bound to occur. However, to implement admission control is difficult in IP-based networks, which are constructed out of the end-to-end principle.

4 Even if routers can perform admission control internally, the path computation and the state updating activities required for setting up and tearing down each flow will overwhelm the network. A new QoS architecture, called a nonblocking network, has been proposed recently, and it requires no internal admission control and can still offer hard QoS guarantees.

5 In this architecture, as long as each edge node admits not more than a specified amount of traffic, the network will never experience link congestion. For multicast networks, the main problem with this approach is low throughput.

6 Multicast architectures with hard QoS intentions can be divided into two types. One performs multicast at the network layer [Fig. 1(a)], and multicast is done by the routers (IP or MPLS type). The other, like a content distribution network (CDN), performs multicast at the application layer [Fig. 1(b)], and multicast is done by the servers.

7

8 Data transmission in both architectures consists of two parts: Transmission in the backbone network –covers a long distance –bandwidth is more expensive Transmission between a client and its local server –handle by LANs –bandwidth is relatively ample

9 Local data transmissions can also be tackled with the P2P technology as in a hybrid P2P network. The focus of this paper will be on the QoS guarantees in the backbone network.

10 It is well known that without admission control, congestion inside a network is bound to occur, but to implement admission control in a high- speed IP-based network is difficult. One reason is that IP-based networks are constructed out of the end-to-end principle and major signaling protocols. –meaning that a signaling message’s semantics can only be interpreted by the signaling servers located at the edge of the network [see Fig. 1(a)].

11

12 Another reason is that even if every node understands the semantics of a signaling message, as it is the case in Fig. 1(b) where each node is a server, the activities of checking bandwidth availability and setting up the paths for each flow can overwhelm the network.

13 A new QoS architecture has been proposed recently that requires no admission control inside the network and can still guarantee the congestion-free property. It applies to both shortest-path-routing (IP-like) and explicit-routing (MPLS-like) networks.

14 The most salient property of the network is the following: As long as the traffic of the ingress and egress directions admitted by edge node I is less than a i and b i respectively, the network will be congestion-free and none of its links will experience overflow.

15

16 Suppose that the network in Fig. 1(a) is a nonblocking network with a i = b i =900 Mb/s for all edge routers. Suppose also that each edge router connects to three video servers, and each server is allocated 300 Mb/s (even allocations are not a requirement).

17 Routing in a conventional network is based on the assumption that the traffic matrix T = {t ij } is given, where t ij represents the traffic rate from edge node I to edge node J. However, a i and b i are given in a nonblocking network (this pattern is called a hose-model pattern.)

18 For a unicast network, this means that only the row and column sums of T are known (a i =Σ j t ij and b i = Σ j t ji ),but not its t ij. For a multicast network, the relationship between the traffic matrix T and(a i, b i ) is more complicated (see Section II-A).

19 Finding an efficient routing algorithm for a nonblocking network is not a simple task because there are infinite traffic matrices that can satisfy the constraint (a i, b i ), and a feasible routing scheme must guarantee the congestion- free property for all of them. The task becomes even harder if the network needs to support multicast traffic.

20 As far as a nonblocking network is concerned, the most significant benefit of network coding is that it allows us to treat a multicast connection with q destinations as q unicast connections in formulating the flow optimization problem. we are able to prove two important results in this paper. Both results apply to explicit-routing and shortest-path routing networks.

21 1.The optimal paths between a source–destination pair in a nonblocking unicast network are also the optimal paths for the pair in a nonblocking multicast network with network coding. 2.An immediate consequence of the result of 1) is that a nonblocking multicast network can admit the same amount of traffic as in a nonblocking unicast network.

22 II. OPTIMAL ROUTING FORMULATION The formulation of the optimal routing problem of a nonblocking multicast network with network coding is given in this section. The discussion applies to both explicit routing (MPLS-like) and shortest-path routing (IP-like) networks.

23 A. Traffic Unevenness A network can be described as a directed G(V,E) where V is the set of vertices and E is the set of links.


Download ppt "Network-Coding Multicast Networks With QoS Guarantees Yuanzhe Xuan and Chin-Tau Lea, Senior Member, IEEE IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19,"

Similar presentations


Ads by Google