Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Indiana 3D Hydro Group The Effects of Envelope Irradiation on Gravitational Instabilities in Embedded Protoplanetary Disks Kai Cai Astronomy Department.

Similar presentations


Presentation on theme: "1 Indiana 3D Hydro Group The Effects of Envelope Irradiation on Gravitational Instabilities in Embedded Protoplanetary Disks Kai Cai Astronomy Department."— Presentation transcript:

1

2 1 Indiana 3D Hydro Group The Effects of Envelope Irradiation on Gravitational Instabilities in Embedded Protoplanetary Disks Kai Cai Astronomy Department Indiana University May 18, 2006 (Now at: McMaster University) Richard H. Durisen Annie C. Mejía (Univ. of Washington) Megan K. Pickett (Purdue Univ. Calumet) Aaron C. Boley Scott Michael

3 2 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 2 Gravitational Instabilities in Embedded Disks Gravitational Instabilities (GIs) in Disks Toomre’s stability parameter for Q = c s  /  G  < 1  ring instability for Q < 1.5 - 1.7  spiral instability Several class 0/I disks have low Q’s e.g. HL Tau, L1551 IRS5 Why? Disks are massive @ earlier times Disks are smaller @ earlier times This Study: Effects of Envelope Irradiation

4 3 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 3 3D Hydro Code Numerical Characteristics: 2 nd order in space and time Eulerian Fixed cylindrical grid (r, ,z) (256,128,32) to (512,512,64) ~ millions of cells ! Runs in parallel on SMP machines r = 512 z = 64  = 128

5 4 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 4 Radiative Cooling: Mejía (2004) & Cai (2006) – Radiative cooling in the atmosphere (  R <2/3) – Flux-limited diffusion in the disk interior (  R  2/3) – Envelope irradiation: blackbody flux with T env – D’Alessio et al. (2001) mean opacities (dust grains): a max can vary (n(a) ~ a -3.5, a min = 0.005  m) z (AU) Atmosphere (  < 2/3) Interior (  ≥ 2/3) 0 816243240 8 0 r (AU) Envelope Irradiation

6 5 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 5 Initial Axisymmetric Model Initial model for radiative cooling simulations Initial model for radiative cooling simulations R = 40 AU M d = 0.07 M  M  = 0.5 M   (r)  r -1/2 Q min =1.5 R = 40 AU M d = 0.07 M  M  = 0.5 M   (r)  r -1/2 Q min =1.5

7 6 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 6 The Disk Evolution: four phases Irr 15K

8 7 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 7 The Effects of Envelope Irradiation Irr 15K Irr 25K No Irr. 14 ORPs 3500 yr Irr 50K Simulations compared during the asymptotic phase  A  = 1.51 Global t cool = 2.7 ORPs  A  = 1.01 Global t cool = 5 ORPs  A  = 1.16 Global t cool = 3.2 ORPs  A   0.40 Global t cool ~ 9 ORPs Cai et al. (2007, in prep.)

9 8 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 8 Total Nonaxisymmetry A sum of the amplitudes of all m’s, then averaged temporally   A  (13 - 14  ORPs) No-Irr: 1.51 Irr 15K: 1.16 Irr 25K: 1.01 Irr 50K: 0.40 - continues to damp Boss (2002) reported a similar effect when he raised outer disk T.

10 9 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 9 Envelope Irradiation: Q(r) At 14.9 ORPs (= 3725 yrs)

11 10 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 10 Total Energies … ∇·F∇·F   ∫(∇· F)dVdt ∫  dVdt cooling heating

12 11 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 11 The Luminosity of the Envelope Irradiation L env =  T env 4  2  R d 2 = total energy input rate of the envelope irradiation on the disk Stellar luminosity L  =  T  4  4  R  2 (T  = 4000 K, R  = 2 R  ) In all cases, net disk luminosity L disk ~ 5×10 30 erg/s 1.3×10 33 1/350K 7.2×10 31 2.2×10 -2 25K 8.6×10 30 2.8×10 -3 15K L env (erg/s) L env / L  T env

13 12 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 12 Vertical Structure  Irradiation tends to make the disk isothermal vertically No-Irr Irr @ 25K  T

14 13 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 13 Mass Transport, Modes & Torques Gravitational torques (A. Boley) Average mass transport over the last 3 ORPs

15 14 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 14 L1551 IRS 5 system Osorio et al. (2003) Lim & Takakuwa (2005) A triple?

16 15 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 15 L1551 IRS 5 : model fit Osorio et al. (2003)

17 16 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 16 A new initial model M  = 0.3 M , M d = 0.2 M , R = 15 AU,  (r)  r -1, Q min <1 - close to L1551 IRS 5 northern disk Setup: T env = 120K, a max =200  m L env ~ L ⋆ of T Tau star (T= 4000K, R= 2R ๏ ) 2 AU

18 17 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 17 Simulating a L1551 IRS 5 Disk Disk expands  R final ~ 30 AU: unrealistic Very high midplane  & long radiative cooling time

19 18 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 18 Q(r) and the Correction Factor Corrected Q min = (1 + k mu h)Q 0 ~ 1.4-1.5

20 19 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 19 Analytic Analyses Rafikov (2005)    min   inf [f(  )] 1/5, T mid  T min  T inf [f(  )] 2/5, etc. 0.07 M  disk (at 20 AU) :  inf  201 g cm -2, T inf  39 K, but [f(  )] 1/5 might be large (~1.5) For L1551 IRS 5 disk (at 10 AU):  inf  1220 g cm -2 and T inf  65.6 K, but [f(  )] 1/5 ~ 5.3  Despite simplifications, Rafikov (2005)’s analytic arguments may be valid out to ~ 20 AU for our disk. Matzner & Levin (2005): o nly discussed SLING as global GIs

21 20 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 20 Conclusions Envelope irradiation tends to suppress GIs – it cannot be ignored ! No dense clumps produced, so direct giant formation by GIs unlikely. GIs  fragmentation! Mild irradiation preferentially suppresses high-order modes Future Stellar irradiation – T irr (r) ~ r -1/2 Consider the gravitational effect of a binary companion – e.g., Mayer et al. (2005), Boss (2006) -> Roche potential Mass infall onto the disk - e.g., Mayer et al. (2004), Banerjee et al. (2004), Vorobyov & Basu (2005) ……

22 21 Indiana University - Purdue University Calumet 3D Hydro Group Indiana University - Purdue University Calumet 3D Hydro Group Click to edit Master subtitle style Click to edit Master title style 21 Thank you!


Download ppt "1 Indiana 3D Hydro Group The Effects of Envelope Irradiation on Gravitational Instabilities in Embedded Protoplanetary Disks Kai Cai Astronomy Department."

Similar presentations


Ads by Google