Presentation is loading. Please wait.

Presentation is loading. Please wait.

Problem Solving by Searching Search Methods : informed (Heuristic) search.

Similar presentations


Presentation on theme: "Problem Solving by Searching Search Methods : informed (Heuristic) search."— Presentation transcript:

1 Problem Solving by Searching Search Methods : informed (Heuristic) search

2 2 Traditional informed search strategies Greedy Best first search “Always chooses the successor node with the best f value” where f(n) = h(n) We choose the one that is nearest to the final state among all possible choices A* search Best first search using an “admissible” heuristic function f that takes into account the current cost g Always returns the optimal solution path

3 Informed Search Strategies Best First Search

4 Informed Search Strategies Greedy Search eval-fn: f(n) = h(n)

5 5 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

6 6 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

7 7 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

8 8 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

9 9 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

10 10 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

11 11 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

12 12 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

13 13 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

14 14 Greedy Search ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140 dist(A-E-F-I) = 140 + 99 + 211 = 450

15 15 Greedy Search: Tree Search ABCEFI 99 211 GA 80 Start Goal 75 118 140 [374] [329] [253] [193] [366] [178] E [0] [253] Path cost(A-E-F-I) = 253 + 178 + 0 = 431 dist(A-E-F-I) = 140 + 99 + 211 = 450

16 16 Greedy Search: Optimal ? ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic dist(A-E-G-H-I) =140+80+97+101=418 StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 140

17 17 Greedy Search: Complete ? ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 f(n) = h (n) = straight-line distance heuristic StateHeuristic: h(n) A366 B374 ** C250 D244 E253 F178 G193 H98 I0 140

18 18 Greedy Search: Time and Space Complexity ? ABDCEFI 99 211 GH 80 Start Goal 97 101 75 118 111 140 Greedy search is not optimal. Greedy search is incomplete without systematic checking of repeated states. In the worst case, the Time and Space Complexity of Greedy Search are both O(b m ) Where b is the branching factor and m the maximum path length

19 Informed Search Strategies A* Search eval-fn: f(n)=g(n)+h(n)

20 20 A* (A Star) Greedy Search minimizes a heuristic h(n) which is an estimated cost from a node n to the goal state. However, although greedy search can considerably cut the search time (efficient), it is neither optimal nor complete. Uniform Cost Search minimizes the cost g(n) from the initial state to n. UCS is optimal and complete but not efficient. New Strategy: Combine Greedy Search and UCS to get an efficient algorithm which is complete and optimal.

21 21 A* (A Star) A* uses a heuristic function which combines g(n) and h(n): f(n) = g(n) + h(n) g(n) is the exact cost to reach node n from the initial state. Cost so far up to node n. h(n) is an estimation of the remaining cost to reach the goal.

22 22 A* (A Star) n g(n) h(n) f(n) = g(n)+h(n)

23 23 A* Search f(n) = g(n) + h (n) g(n): is the exact cost to reach node n from the initial state. StateHeuristic: h(n) A366 B374 C329 D244 E253 F178 G193 H98 I0 A B D C E F I 99 211 G H 80 Start Goal 97 101 75 118 111 140


Download ppt "Problem Solving by Searching Search Methods : informed (Heuristic) search."

Similar presentations


Ads by Google