Presentation is loading. Please wait.

Presentation is loading. Please wait.

© 2013 UNIVERSITY OF PITTSBURGH Supporting Rigorous Mathematics Teaching and Learning Using Academically Productive Talk Moves: Orchestrating a Focused.

Similar presentations


Presentation on theme: "© 2013 UNIVERSITY OF PITTSBURGH Supporting Rigorous Mathematics Teaching and Learning Using Academically Productive Talk Moves: Orchestrating a Focused."— Presentation transcript:

1 © 2013 UNIVERSITY OF PITTSBURGH Supporting Rigorous Mathematics Teaching and Learning Using Academically Productive Talk Moves: Orchestrating a Focused Discussion Tennessee Department of Education Middle School Mathematics Grade 7

2 Rationale Mathematics reform calls for teachers to engage students in discussing, explaining, and justifying their ideas. Although teachers are asked to use students’ ideas as the basis for instruction, they must also keep in mind the mathematics that the class is expected to explore (Sherin, 2000, p. 125). By engaging in a high-level task and reflecting on ways in which the facilitator structured and supported the discussion of mathematical ideas, teachers will learn that they are responsible for orchestrating discussions in ways that make it possible for students to own their learning, as well as for the teacher to assess and advance student understanding of knowledge and mathematical reasoning.

3 © 2013 UNIVERSITY OF PITTSBURGH Session Goals Participants will: learn about Accountable Talk ® features and indicators and consider the benefit of all being present in a lesson; learn that there are specific moves related to each of the talk features that help to develop a discourse culture; and consider the importance of the four key moves of ensuring productive discussion (marking, recapping, challenging, and revoicing). Accountable Talk ® is a registered trademark of the University of Pittsburgh

4 © 2013 UNIVERSITY OF PITTSBURGH Overview of Activities Participants will: review the Accountable Talk features and indicators; identify and discuss Accountable Talk moves in a video; and align CCSS and essential understandings (EUs) to a task and zoom in for a more specific look at key moves for engaging in productive talk (marking, recapping, challenging, and revoicing).

5 TASKS as they appear in curricular/ instructional materials TASKS as set up by the teachers TASKS as implemented by students Student Learning The Mathematical Tasks Framework Stein, Smith, Henningsen, & Silver, 2000 Linking to Research/Literature: The QUASAR Project

6 TASKS as they appear in curricular/ instructional materials TASKS as set up by the teachers TASKS as implemented by students Student Learning The Mathematical Tasks Framework Stein, Smith, Henningsen, & Silver, 2000 Linking to Research/Literature: The QUASAR Project Setting Goals Selecting Tasks Anticipating Student Responses Orchestrating Productive Discussion Monitoring students as they work Asking assessing and advancing questions Selecting solution paths Sequencing student responses Connecting student responses via Accountable Talk ® discussions Accountable Talk ® is a registered trademark of the University of Pittsburgh

7 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Features and Indicators

8 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Discussion Study the Accountable Talk features and indicators. Turn and Talk with your partner about what you would expect teachers and students to be saying during an Accountable Talk discussion so that the discussion is accountable to: −the learning community; −accurate, relevant knowledge; and −standards of rigorous thinking.

9 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Features and Indicators Accountability to the Learning Community Active participation in classroom talk. Listen attentively. Elaborate and build on each others’ ideas. Work to clarify or expand a proposition. Accountability to Knowledge Specific and accurate knowledge. Appropriate evidence for claims and arguments. Commitment to getting it right. Accountability to Rigorous Thinking Synthesize several sources of information. Construct explanations and test understanding of concepts. Formulate conjectures and hypotheses. Employ generally accepted standards of reasoning. Challenge the quality of evidence and reasoning.

10 © 2013 UNIVERSITY OF PITTSBURGH Solving and Discussing the Cognitive Demand of the Light Bulb Task

11 © 2013 UNIVERSITY OF PITTSBURGH The Structure and Routines of a Lesson The Explore Phase/Private Work Time Generate Solutions The Explore Phase/ Small Group Problem Solving 1.Generate and Compare Solutions 2.Assess and Advance Student Learning Share, Discuss, and Analyze Phase of the Lesson 1. Share and Model 2. Compare Solutions 3.Focus the Discussion on Key Mathematical Ideas 4. Engage in a Quick Write MONITOR: Teacher selects examples for the Share, Discuss, and Analyze Phase based on: Different solution paths to the same task Different representations Errors Misconceptions SHARE: Students explain their methods, repeat others’ ideas, put ideas into their own words, add on to ideas and ask for clarification. REPEAT THE CYCLE FOR EACH SOLUTION PATH COMPARE: Students discuss similarities and difference between solution paths. FOCUS: Discuss the meaning of mathematical ideas in each representation REFLECT: Engage students in a Quick Write or a discussion of the process. Set Up the Task Set Up of the Task

12 © 2013 UNIVERSITY OF PITTSBURGH Engaging in a Lesson: The Light Bulb Task Solve the task. Discuss your solutions with your peers. Attempt to engage in an Accountable Talk discussion when discussing the solutions. Assign one person in the group to be the observer. This person will be responsible for reporting some of the ways in which the group is accountable to: −the learning community; −accurate, relevant knowledge; and −standards of rigorous thinking.

13 © 2013 UNIVERSITY OF PITTSBURGH Engaging in a Lesson: The Light Bulb Task Alazar Electric Company sells light bulbs to big box stores – the big chain stores that frequently buy large numbers of bulbs in one sale. They sample their bulbs for defects routinely. A sample of 96 light bulbs consisted of 4 defective ones. Assume that today’s batch of 6,000 light bulbs has the same proportion of defective bulbs as the sample. Determine the total number of defective bulbs made today. The big businesses they sell to accept no larger than a 4% rate of defective bulbs. Does today’s batch meet that expectation? Explain how you made your decision.

14 © 2013 UNIVERSITY OF PITTSBURGH Reflecting on Our Engagement in the Lesson The observer should share some observations about the group’s engagement in an Accountable Talk discussion.

15 © 2013 UNIVERSITY OF PITTSBURGH Reflecting on Our Engagement in the Lesson In what ways did small groups engage in an Accountable Talk discussion? In what ways did we engage in an Accountable Talk discussion during the group discussion of the solutions?

16 © 2013 UNIVERSITY OF PITTSBURGH Aligning the CCSS to the Light Bulb Task Study the Grade 7 CCSS for Mathematical Content within the Ratio and Proportion domain. Which standards are students expected to demonstrate when solving the task? Identify the CCSS for Mathematical Practice required by the written task.

17 The CCSS for Mathematical Content: Grade 7 Common Core State Standards, 2010, p. 48, NGA Center/CCSSO Ratios and Proportional Relationships 7.RP Analyze proportional relationships and use them to solve real-world and mathematical problems. 7.RP.A.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction ½ / ¼ miles per hour, equivalently 2 miles per hour. 7.RP.A.2 Recognize and represent proportional relationships between quantities. 7.RP.A.2a Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. 7.RP.A.2b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

18 The CCSS for Mathematical Content: Grade 7 Common Core State Standards, 2010, p. 48, NGA Center/CCSSO Ratios and Proportional Relationships 7.RP Analyze proportional relationships and use them to solve real-world and mathematical problems. 7.RP.A.2c Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 7.RP.A.2d Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate. 7.RP.A.3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

19 The CCSS for Mathematical Practice 1.Make sense of problems and persevere in solving them. 2.Reason abstractly and quantitatively. 3.Construct viable arguments and critique the reasoning of others. 4.Model with mathematics. 5.Use appropriate tools strategically. 6.Attend to precision. 7.Look for and make use of structure. 8.Look for and express regularity in repeated reasoning. Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO

20 © 2013 UNIVERSITY OF PITTSBURGH Determining the Cognitive Demand of the Task: The Light Bulb Task

21 © 2013 UNIVERSITY OF PITTSBURGH Determining the Cognitive Demand of the Task Refer to the Mathematical Task Analysis Guide. Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A., 2000. Implementing standards-based mathematics instruction: A casebook for professional development, p. 16. New York: Teachers College Press. How would you characterize the Light Bulb Task in terms of its cognitive demand? (Refer to the indicators on the Task Analysis Guide.)

22 The Mathematical Task Analysis Guide Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2000) Implementing standards-based mathematics instruction: A casebook for professional development, p. 16. New York: Teachers College Press.

23 © 2013 UNIVERSITY OF PITTSBURGH The Light Bulb Task: A Doing Mathematics Task Requires complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed approach or pathway explicitly suggested by the task, task instructions, or a worked-out example). Requires students to explore and to understand the nature of mathematical concepts, processes, or relationships. Demands self-monitoring or self-regulation of one’s own cognitive processes. Requires students to access relevant knowledge and experiences and make appropriate use of them in working through the task. Requires students to analyze the task and actively examine task constraints that may limit possible solution strategies and solutions. Requires considerable cognitive effort and may involve some level of anxiety for the student due to the unpredictable nature of the solution process required.

24 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Moves

25 © 2013 UNIVERSITY OF PITTSBURGH The Structure and Routines of a Lesson The Explore Phase/Private Work Time Generate Solutions The Explore Phase/ Small Group Problem Solving 1.Generate and Compare Solutions 2.Assess and Advance Student Learning Share, Discuss, and Analyze Phase of the Lesson 1. Share and Model 2. Compare Solutions 3.Focus the Discussion on Key Mathematical Ideas 4. Engage in a Quick Write MONITOR: Teacher selects examples for the Share, Discuss, and Analyze phase based on: Different solution paths to the same task Different representations Errors Misconceptions SHARE: Students explain their methods, repeat others’ ideas, put ideas into their own words, add on to ideas and ask for clarification. REPEAT THE CYCLE FOR EACH SOLUTION PATH COMPARE: Students discuss similarities and difference between solution paths. FOCUS: Discuss the meaning of mathematical ideas in each representation REFLECT: Engage students in a Quick Write or a discussion of the process. Set Up the Task Set Up of the Task

26 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Moves Examine the ways in which the moves are grouped based on how they: support accountability to the learning community; support accountability to knowledge; and support accountability to rigorous thinking. Consider: In what ways are the Accountable Talk categories similar? Different? Why do you think we need a category called “To Ensure Purposeful, Coherent, and Productive Group Discussion”?

27 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk: Features and Indicators Accountability to the Learning Community Active participation in classroom talk. Listen attentively. Elaborate and build on each others’ ideas. Work to clarify or expand a proposition. Accountability to Knowledge Specific and accurate knowledge. Appropriate evidence for claims and arguments. Commitment to getting it right. Accountability to Rigorous Thinking Synthesize several sources of information. Construct explanations and test understanding of concepts. Formulate conjectures and hypotheses. Employ generally accepted standards of reasoning. Challenge the quality of evidence and reasoning.

28 Accountable Talk Moves Talk MoveFunctionExample To Ensure Purposeful, Coherent, and Productive Group Discussion MarkingDirect attention to the value and importance of a student’s contribution. That’s an important point. ChallengingRedirect a question back to the students, or use students’ contributions as a source for further challenge or query. Let me challenge you: Is that always true? RevoicingAlign a student’s explanation with content or connect two or more contributions with the goal of advancing the discussion of the content. S: 4 + 4 + 4. You said three groups of four. RecappingMake public in a concise, coherent form, the group’s achievement at creating a shared understanding of the phenomenon under discussion. Let me put these ideas all together. What have we discovered? To Support Accountability to Community Keeping the Channels Open Ensure that students can hear each other, and remind them that they must hear what others have said. Say that again and louder. Can someone repeat what was just said? Keeping Everyone Together Ensure that everyone not only heard, but also understood, what a speaker said. Can someone add on to what was said? Did everyone hear that? Linking Contributions Make explicit the relationship between a new contribution and what has gone before. Does anyone have a similar idea? Do you agree or disagree with what was said? Your idea sounds similar to his idea. Verifying and Clarifying Revoice a student’s contribution, thereby helping both speakers and listeners to engage more profitably in the conversation. So are you saying..? Can you say more? Who understood what was said?

29 © 2013 UNIVERSITY OF PITTSBURGH To Support Accountability to Knowledge Pressing for Accuracy Hold students accountable for the accuracy, credibility, and clarity of their contributions. Why does that happen? Someone give me the term for that. Building on Prior Knowledge Tie a current contribution back to knowledge accumulated by the class at a previous time. What have we learned in the past that links with this? To Support Accountability to Rigorous Thinking Pressing for Reasoning Elicit evidence to establish what contribution a student’s utterance is intended to make within the group’s larger enterprise. Say why this works. What does this mean? Who can make a claim and then tell us what their claim means? Expanding Reasoning Open up extra time and space in the conversation for student reasoning. Does the idea work if I change the context? Use bigger numbers? Accountable Talk Moves (continued)

30 © 2013 UNIVERSITY OF PITTSBURGH Reflection Question As you watch the short video segment, consider what students are learning and where you might focus the discussion in order to discuss mathematical ideas listed in the CCSS. Identify: the specific Accountable Talk moves used by the teacher; and the purpose that the moves served.  Mark times during the lesson when you would call the lesson academically rigorous.

31 © 2013 UNIVERSITY OF PITTSBURGH The Light Bulb Lesson Context Visiting Teacher: Victoria Bill Teacher: Reginald Coleman School: Community Health Academy of the Heights Middle School District: New York City Schools Principal: Ms. Vu Grade Level: 7 th Grade The students in the video episode are in a mainstream mathematics classroom in the New York City Schools. The students are solving the Light Bulb Task. This part of the video captures the Share, Discuss, and Analyze phase of the lesson.

32 © 2013 UNIVERSITY OF PITTSBURGH Norms for Collaborative Study The goal of all conversations about episodes of teaching (or artifacts of practice in general) is to advance our own learning, not to “fix” the practice of others. In order to achieve this goal, the facilitator chooses a lens to frame what you look at and to what you pay attention. Use the Accountable Talk features and indicators when viewing the lesson. During this work, we: agree to analyze the episode or artifact from the identified perspective; cite specific examples during the discussion that provide evidence of a particular claim; listen to and build on others’ ideas; and use language that is respectful of those in the video and in the group.

33 © 2013 UNIVERSITY OF PITTSBURGH The Light Bulb Task Alazar Electric Company sells light bulbs to big box stores – the big chain stores that frequently buy large numbers of bulbs in one sale. They sample their bulbs for defects routinely. A sample of 96 light bulbs consisted of 4 defective ones. Assume that today’s batch of 6,000 light bulbs has the same proportion of defective bulbs as the sample. Determine the total number of defective bulbs made today. The big businesses they sell to accept no larger than a 4% rate of defective bulbs. Does today’s batch meet that expectation? Explain how you made your decision.

34 © 2013 UNIVERSITY OF PITTSBURGH Reflecting on the Accountable Talk Discussion Step back from the discussion. What are some patterns that you notice? What mathematical ideas does the teacher want students to discover and discuss?

35 © 2013 UNIVERSITY OF PITTSBURGH Essential Understandings Study the essential understandings the teacher considered in preparation for the Share, Discuss, and Analyze phase of the lesson.

36 © 2013 UNIVERSITY OF PITTSBURGH Essential Understandings Essential UnderstandingCCSS Comparing Quantities Two quantities can be compared using addition/subtraction or multiplication/division. Forming a ratio is a way of comparing two quantities multiplicatively. Reasoning with ratios involves attending to and coordinating two quantities. 6.RP.A.1 Unit Rate When the ratio of a/b is scaled up or down to a/b/1, a/b to 1 is referred to as a unit rate. Two unit rates are associated with a multiplicative relationship a and b: a/b to 1 and b/a to 1. Each unit rate reveals different information about real- world problems associated with the relationship. 7.RP.A.1 Proportional Reasoning A proportion is a statement that two ratios are equivalent, b/a = d/c. There are a variety of ways a proportion can be organized to establish an equality relationship between two quantities. 7.RP.A.2 Constant of Proportionality Forming a ratio indicates that two quantities are being compared in such a way that one of them is a constant multiple of the other, i.e., since the ratios a/b = c implies a = bc, then a is a constant multiple, c, of b. A ratio can be scaled up using multiplication because the two quantities vary in such a way that one of them is a constant multiple of the other; a ratio can be scaled down using division, since division by some number, q, is the equivalent of multiplication by the multiplicative inverse of q, 1/q. 7.RP.A.2b

37 © 2013 UNIVERSITY OF PITTSBURGH Characteristics of an Academically Rigorous Lesson This task is a cognitively demanding task; however, it may not necessarily end up being an academically rigorous task. What do we mean by this?

38 © 2013 UNIVERSITY OF PITTSBURGH Academic Rigor in a Thinking Curriculum The principle of learning, Academic Rigor in a Thinking Curriculum, consists of three features: A Knowledge Core High-Thinking Demand Active Use of Knowledge In order to determine if a lesson has been academically rigorous, we have to determine the degree to which student learning is advanced by the lesson. What do we have to hear and see in order to determine if the lesson was academically rigorous?

39 © 2013 UNIVERSITY OF PITTSBURGH Essential Understandings Essential UnderstandingCCSS Comparing Quantities Two quantities can be compared using addition/subtraction or multiplication/division. Forming a ratio is a way of comparing two quantities multiplicatively. Reasoning with ratios involves attending to and coordinating two quantities. 6.RP.A.1 Unit Rate When the ratio of a/b is scaled up or down to a/b/1, a/b to 1 is referred to as a unit rate. Two unit rates are associated with a multiplicative relationship a and b: a/b to 1 and b/a to 1. Each unit rate reveals different information about real-world problems associated with the relationship. 7.RP.A.1 Proportional Reasoning A proportion is a statement that two ratios are equivalent, b/a = d/c. There are a variety of ways a proportion can be organized to establish an equality relationship between two quantities. 7.RP.A.2 Constant of Proportionality Forming a ratio indicates that two quantities are being compared in such a way that one of them is a constant multiple of the other, i.e., since the ratios a/b = c implies a = bc, then a is a constant multiple, c, of b. A ratio can be scaled up using multiplication because the two quantities vary in such a way that one of them is a constant multiple of the other; a ratio can be scaled down using division, since division by some number, q, is the equivalent of multiplication by the multiplicative inverse of q, 1/q. 7.RP.A.2b

40 Five Different Representations of a Function Van De Walle, 2004, p. 440 Language TableContext GraphEquation

41 © 2013 UNIVERSITY OF PITTSBURGH Focusing on Key Accountable Talk Moves The Light Bulb Task

42 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk: Features and Indicators Accountability to the Learning Community Active participation in classroom talk. Listen attentively. Elaborate and build on each others’ ideas. Work to clarify or expand a proposition. Accountability to Knowledge Specific and accurate knowledge. Appropriate evidence for claims and arguments. Commitment to getting it right. Accountability to Rigorous Thinking Synthesize several sources of information. Construct explanations and test understanding of concepts. Formulate conjectures and hypotheses. Employ generally accepted standards of reasoning. Challenge the quality of evidence and reasoning.

43 © 2013 UNIVERSITY OF PITTSBURGH Accountable Talk Moves Talk MoveFunctionExample To Ensure Purposeful, Coherent, and Productive Group Discussion MarkingDirect attention to the value and importance of a student’s contribution. That’s an important point. Challenging Redirect a question back to the students, or use students’ contributions as a source for further challenge or query. Let me challenge you: Is that always true? Revoicing Align a student’s explanation with content or connect two or more contributions with the goal of advancing the discussion of the content.. S: 4 + 4 + 4. You said three groups of four. Recapping Make public in a concise, coherent form, the group’s achievement at creating a shared understanding of the phenomenon under discussion. Let me put these ideas all together. What have we discovered? To Support Accountability to Community Keeping the Channels Open Ensure that students can hear each other, and remind them that they must hear what others have said. Say that again and louder. Can someone repeat what was just said? Keeping Everyone Together Ensure that everyone not only heard, but also understood, what a speaker said. Can someone add on to what was said? Did everyone hear that? Linking Contributions Make explicit the relationship between a new contribution and what has gone before. Does anyone have a similar idea? Do you agree or disagree with what was said? Your idea sounds similar to his idea. Verifying and Clarifying Revoice a student’s contribution, thereby helping both speakers and listeners to engage more profitably in the conversation. So are you saying..? Can you say more? Who understood what was said?

44 © 2013 UNIVERSITY OF PITTSBURGH To Support Accountability to Knowledge Pressing for Accuracy Hold students accountable for the accuracy, credibility, and clarity of their contributions. Why does that happen? Someone give me the term for that. Building on Prior Knowledge Tie a current contribution back to knowledge accumulated by the class at a previous time. What have we learned in the past that links with this? To Support Accountability to Rigorous Thinking Pressing for Reasoning Elicit evidence to establish what contribution a student’s utterance is intended to make within the group’s larger enterprise. Say why this works. What does this mean? Who can make a claim and then tell us what their claim means? Expanding Reasoning Open up extra time and space in the conversation for student reasoning. Does the idea work if I change the context? Use bigger numbers? Accountable Talk Moves (continued)

45 © 2013 UNIVERSITY OF PITTSBURGH Focusing on Accountable Talk Moves Read the description of each move and study the example that has been provided for each move. What is distinct about each of the moves? Revoice student contributions; mark significant contributions; challenge with a counter-example; or recap the components of the lesson.

46 © 2013 UNIVERSITY OF PITTSBURGH Revoicing Extend a student’s contribution. Connect a student’s contribution to the text or to other students’ contributions.  Align content with an explanation.  Add clarity to a contribution.  Link student contributions to accurate mathematical vocabulary.  Connect two or more contributions to advance the lesson.

47 © 2013 UNIVERSITY OF PITTSBURGH An Example of Revoicing S: —and it gives you 12 or you multiply 4 times 3 because there’s 3 boxes. T: All right, he said you could do 4 times 3 and then— how would you get from here to here, though? (Points to other side of table, the total number of bulbs.)

48 © 2013 UNIVERSITY OF PITTSBURGH Marking Explicitly talk about an idea. Highlight features that are unique to a situation. Draw attention to an idea or to alternative ideas.

49 © 2013 UNIVERSITY OF PITTSBURGH An Example of Marking S: It looks like they wrote fractions. Like, broken bulbs over total bulbs. 4 over 96 is equal to 250 over 6,000. T: Hmm—did everyone hear what Selena just said? She noticed that when we write the fraction of defective bulbs out of total bulbs, they are both equivalent.

50 © 2013 UNIVERSITY OF PITTSBURGH Recapping Summarize or retell. Make explicit the large idea. Provide students with a holistic view of the concept.

51 © 2013 UNIVERSITY OF PITTSBURGH Challenging Redirect a question back to the students, or use students’ contributions as a source for further challenge or query. Share a counter-example and ask students to compare problems. Question the meaning of the math concept.

52 © 2013 UNIVERSITY OF PITTSBURGH An Example of Recapping and Challenge

53 © 2013 UNIVERSITY OF PITTSBURGH Appropriation The process of appropriation is reciprocal and sequential. If appropriation takes place, the child transforms the new knowledge or skill into an action in a new and gradually understood activity. What would this mean with respect to classroom discourse? What should we expect to happen in the classroom?

54 © 2013 UNIVERSITY OF PITTSBURGH Orchestrating Discussions Read the segments of transcript from the lesson. Decide if examples 1 – 3 illustrate marking, recapping, challenging, or revoicing. Be prepared to share your rationale for identifying a particular discussion move. Write the next discussion move for examples 4 and 5 and be prepared to share your move and your rationale for writing the move.

55 © 2013 UNIVERSITY OF PITTSBURGH Reflecting on Talk Moves What have you learned about: marking; recapping; challenging; and revoicing? Why are these moves important in lessons?

56 © 2013 UNIVERSITY OF PITTSBURGH Application to Practice What will you keep in mind when attempting to use Accountable Talk moves during a lesson? What role does talk play? What does it take to maintain the demands of a cognitively demanding task during the lesson so that you have a rigorous mathematics lesson?


Download ppt "© 2013 UNIVERSITY OF PITTSBURGH Supporting Rigorous Mathematics Teaching and Learning Using Academically Productive Talk Moves: Orchestrating a Focused."

Similar presentations


Ads by Google