Download presentation
1
Gross Properties of Nuclei
Sizes Gross Properties of Nuclei Nuclear Sizes
2
Absorption Probability and Cross Section
Incoming Transmitted Mass absorption coefficient m: dN = -Nm dx Illuminated area A dx Nucleus cross section area s Target Thin target, thickness x Absorption upon intersection of nuclear cross section area s j beam current areal density A area illuminated by beam L = /mol Loschmidt# NT # target nuclei in beam MT target molar weight rT target density dx target thickness [s]=1barn = 10-24cm2 Nuclear Sizes elementary absorption cross section area per nucleus W. Udo Schröder, 2008
3
Size Information from Nuclear Scattering
(Pu-Be) n Source Amp/Disc Cntr Basic exptl. setup with n source: Count Target in/target out Target n Detector Electronics DAQ d from small accelerator (Ed100 keV): T(d,n)3He En 14 MeV Experiment (approx. analysis) Nuclear Sizes J.B.A. England, Techn.Nucl. Str. Meas., Halsted, New York,1974 Equilibrium matter density r0 W. Udo Schröder, 2008
4
Interaction Radii q d Distance of closest approach scatter angle q
a scattering 16O scattering 12C scattering D.D. Kerlee et al., PR 107, 1343 (1957) Nuclear Sizes q d Distance of closest approach scatter angle q P.R. Christensen et al., NPA207, 33 (1973) W. Udo Schröder, 2008
5
Elastic Electron Scattering
Incoming plane wave= approximation to particle wave packet Impulse Approximation for interaction: Detector a b phase difference of elementary waves relative to center of nucleus l Center of nucleus: r=0 l Nuclear Sizes probability amplitude for proton n W. Udo Schröder, 2008
6
Momentum Transfer and Scatter Angle in (e,e)
q/2 Scattering angle q determines momentum transfer <bra* | ket> Nuclear Sizes f0 x density of proton n at rn W. Udo Schröder, 2008
7
Separation of Variables
Point nucleus (PN): a=b, jn=0 determine scaling factor Z protons Finite nucleus: integrate over space where proton wave function are non-zero Strength of Coulomb interaction same for each proton Nuclear Sizes Scatter cross section for finite nucleus = cross section for point-nucleus x form factor F of charge distribution W. Udo Schröder, 2008
8
Mott Cross Section for Electron Scattering
In typical nuclear applications, electron kinetic energies K » mec2 (extreme) relativistic domain (b =v/c) check non-relativistic limit e- = good probe for objects on fm scale Nuclear Sizes Obtained in 1. order quantum mechanical perturbation theory, neglects nuclear recoil momentum. W. Udo Schröder, 2008
9
Elastic (e,e) Scattering Data
ds/dW diffraction patterns 1st. minimum q(q)4.5/R 3-arm electron spectrometer (Univ. Mainz) X 10 Nuclear Sizes X 0.1 R. Hofstadter, Electron Scattering and Nuclear Structure, Benjamin, 1963 J.B. Bellicard et al., PRL 19,527 (1967) W. Udo Schröder, 2008
10
Fourier Transform of Charge Distribution
Form factor F contains entire information about charge distribution R r R Generic Fourier transform of f: 4.4a Nuclear Sizes C Fermi distribution r, half-density radius C diffuseness a C is different from the radius of equivalent sharp sphere Req W. Udo Schröder, 2008
11
Nuclear Charge Form Factor
Form factor for Coulomb scattering = Fourier transform of charge distribution. r-Distribution Function r(r) Form Factor q-Distribution Point 1 constant Homogeneous sharp sphere r0 for r R =0 for r >R oscillatory Exponential exponential Gaussian Nuclear Sizes W. Udo Schröder, 2008
12
Model-Independent Analysis of Scattering
Interpretation in terms of radial moments of charge distribution Expansion: =1 mean-square radius of charge distribution Nuclear Sizes r R Equivalent sharp radius of any r(r): W. Udo Schröder, 2008
13
Nuclear Charge Distributions (e,e)
Rz(H) = ( ) fm Rz(He)= 1.67 fm t=4.4a C: Half-density radius a: Surface diffuseness t: Surface thickness Leptodermous: t « C Holodermous : t ~ C Nuclear Sizes Density of 4He is 2 x r0 ! R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957) W. Udo Schröder, 2008
14
Charge Radius Systematics
Note: Slightly different fit line, if not forced through zero. Nuclear Sizes r0(charge) decreases for heavy nuclei like Z/A for all nuclei: r0(mass) = 0.17 fm-3 = const. 1014 g/cm3 (r0=1.07 fm) W. Udo Schröder, 2008
15
Muonic X-Rays r(r) r X-ray energies 100keV–6 MeV
Effect exists for also for e-atoms but is weaker than for muons Negative muon: m- e- mm = 207me Replace electron by muon “muonic atom” Bohr orbits, am = ae/207 107 times stronger fields r(r) r X-ray energies 100keV–6 MeV Isomeric/isotopic shifts DEis 3d2p 1s DEis(1s) r VCoul(r) En Point Nucleus point nucleus Excited ground nuclear state DEis(2p) Finite size Nuclear Sizes W. Udo Schröder, 2008
16
Charge Radii from Muonic Atoms
Energy/keV 2p3/2 1s1/2 2p1/2 1s1/2 Nuclear Sizes Engfer et al., Atomic Nucl. Data Tables 14, 509 (1974) Sensitive to isotopic, isomeric, chemical effects E.B. Shera et al., PRC14, 731 (1976) W. Udo Schröder, 2008
17
Mass and Charge Distributions
Parameters of Fermi Distribution Charge density: Mass density distribution: except for small surface increase in n density (“neutron skin”) Constant central density for all nuclides, except the very light (Li, Be, B,..) Nuclear Sizes W. Udo Schröder, 2008
18
Leptodermous Distributions
R.W. Hasse & W.D. Myers, Geometrical relationships of macroscopic nuclear physics, Springer V., New York, 1988 Fermi Distribution (a C) C = Central radius R = Equivalent sharp radius Q = Equivalent rms radius b = Surface width Leptodermous Expansion in (b/R)n Nuclear Sizes W. Udo Schröder, 2008
19
Studies with Secondary Beams
Produce a secondary beam of projectiles from interactions of intense primary beam with “production” target projectiles rare/unstable isotopes, induce scattering and reactions in “p” target Nuclear Sizes Tanihata et al., RIKEN-AF-NP-233 (1996) W. Udo Schröder, 2008
20
“Interaction Radii for Exotic Nuclei
Derive sR =sTotal - selastic sR =:p[RI(P)+RI(T)]2 Nuclear Sizes Kox Parameterization: Interaction Radius =(N-Z)/2 Tanihata et al., RIKEN-AF-NP-168 (1995) W. Udo Schröder, 2008
21
“Halo” Nuclei From p scattering on 11Li extended mass distribution (“halo”). Valence-neutron correlations in 11Li: r1 = r2 = 5 fm, r12 = 7 fm 9Li n 11Li Parameterization: tn 6He - 8He mass density distributions Experiment: dashed, Theory (fit):solid Nuclear Sizes Korshenninikov et al., RIKEN-AF-NP-233, 1996 W. Udo Schröder, 2008
22
Neutron Skin of Exotic (n-Rich) Nuclei
8He n Which n Orbits? Qrms (4He) = (1.57±0.05)fm Qrms (6He) = (2.48±0.03)fm Qrms (8He) = (2.52±0.03)fm V(8He) = 4.1 x V(4He) ! rms matter radii Tanihata et al., PLB 289,261 (1992) Thick n-skin for light n-rich nuclei: tn ≈ 0.9 fm (6He, 8He) DRrms =Rnrms - Rprms Relativistic mean field calculations: tn eF Plausible because of weaker nuclear force 133Cs78 stable, normal n-skin thickness, tn ~0.1fm 181Cs126 unstable, significant n-skin, tn ~ 2 fm Can one actually make 181Cs, role of outer n ?? Nuclear Sizes Are there p-halos ? Not yet known. D.H. Hirata et al., PRC 44, 1467(1991) W. Udo Schröder, 2008
23
End of Nuclear Sizes Nuclear Sizes W. Udo Schröder, 2008
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.