Download presentation
Presentation is loading. Please wait.
Published byGladys Garrison Modified over 9 years ago
1
Paige McNaney, Luke Glaser, Freeman Judd
2
Vocabulary Polar Curves: 1. Cardioids 2. Limacons 3. Rose Curves Parametric Equations: 1. Parameter 2. Orientation Polar Coordinate System: 1. Polar Coordinates 2. Polar Axis 3. π/2 Axis
3
Parametric Equations Eliminate the parameter by isolating “t” or “cos/sin Θ” Convert into Rectangular Equation Graph: - Use increasing values of “t” - Use 0, π/2, π, 3π/2 & show orientation/ordered pairs Projectile Motion
4
Polar Coordinates Graph using (r, Θ) on the polar plane - Remember –r means graph in the opposite direction - Be able to find other representations Convert into rectangular coordinates using: 1. x = r cos Θ 2. y = r sin Θ Convert rectangular coordinates into polar using: 1. r 2 = x 2 + y 2 2. tan Θ = y/x 3. State r and Θ as positive values
5
Converting Equations Polar -> Rectangular 1. If Θ = α, then take tangent of each side 2. If r = c, then square both sides 3. If r = a cos/sin Θ, multiply both sides by r Rectangular -> Polar 1. Sub r cos Θ for x & r sin Θ for y 2. Sub r 2 for x 2 + y 2 3. Solve for r
6
Polar Graphing Lines: - Θ = α forms… - r = a/sin Θ forms… - r = b/cos Θ forms… Circles: - r = a center & radius are… - r = a cos Θ center & radius are… - r = a sin Θ center & radius are…
7
Practice Problems Pg 776 # 5, 11, 17, 22 Pg 777 #57a Pg 803 # 71, 75, 79, 87, 94, 96, 97
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.